Joint Czech-French Workshop on Krylov methods for Inverse Problems

Survey of regularization by mollification

Pierre Maréchal

MATHEMATICAL INSTITUTE OF TOULOUSE

Prague, July 19, 2010

Outline

- Introduction
- Approximate inverses
- **Fo**urier synthesis
- Variational theorems
- Pseudo-commutants

Outline

Introduction

- Approximate inverses
- **Fourier** synthesis
- Variational theorems
- Pseudo-commutants

Mollifiers...

... in approximation theory:

Mollifiers...

... in approximation theory:

Reminder Let $\varphi \in L^1(\mathbb{R}^n)$ be such that $\int \varphi(x) dx = 1$. For every $\varepsilon > 0$, let

$$\varphi_{\varepsilon}(x) := \frac{1}{\varepsilon^n} \varphi\left(\frac{x}{\varepsilon}\right).$$

Let $p \in [1, \infty)$. Then, for every $f \in L^p(\mathbb{R}^n)$,

$$\|\varphi_{\varepsilon} * f - f\|_p \longrightarrow 0 \quad \text{as} \quad \varepsilon \longrightarrow 0.$$

Mollifiers...

... in the theory of inverse problems:

... in the theory of inverse problems:

Ill-posed operator equation: $Rf = g_0$

... in the theory of inverse problems:

Ill-posed operator equation: $Rf = g_0$

Example form imaging:

• $f \in L^2(V)$, where $V \subset \mathbb{R}^2$ is the field

 $\blacksquare R$ is some integral operator

... in the theory of inverse problems:

Ill-posed operator equation: $Rf = g_0$

Example form imaging: *f* ∈ L²(V), where V ⊂ ℝ² is the field *R* is some integral operator

A reasonable objective: the reconstruction of $\varphi_{\beta} * f$

... from Fourier synthesis to approximate inverses:

... from Fourier synthesis to approximate inverses:

A LANNES, S ROQUES & M-J CASANOVE, *Stabilized reconstruction in signal and image processing*, J. Mod. Opt., 1987. ... from Fourier synthesis to approximate inverses:

A LANNES, S ROQUES & M-J CASANOVE, *Stabilized reconstruction in signal and image processing*, J. Mod. Opt., 1987.

A K LOUIS & P MAASS, A mollifier method for linear operator equations of the first kind, *Inverse Problems*, 1990.

... variational theorems:

... variational theorems:

N ALIBAUD, P M & Y SAESOR, A variational approach to the inversion of truncated Fourier operators, *Inverse Problems*, 2009.

... variational theorems:

N ALIBAUD, P M & Y SAESOR, A variational approach to the inversion of truncated Fourier operators, *Inverse Problems*, 2009.

X. BONNEFOND & P M, A variational approach to the *inversion of some compact operators*, Pacific Journal of Optimization, 2009.

Outline

Introduction

Approximate inverses
Fourier synthesis
Variational theorems
Pseudo-commutants

Ill-posed equation: Rf = g

Ill-posed equation: Rf = g

Ill-posed equation: Rf = g

$$\phi_{\beta}(\mathbf{x}, \mathbf{y}) := \frac{1}{\beta^n} \phi\left(\frac{\mathbf{x} - \mathbf{y}}{\beta}\right)$$

Ill-posed equation: Rf = g

$$\phi_{\beta}(\mathbf{x}, \mathbf{y}) := \frac{1}{\beta^n} \phi\left(\frac{\mathbf{x} - \mathbf{y}}{\beta}\right)$$

$$f_{\beta}(\mathbf{y}) := \int f(\mathbf{x})\phi_{\beta}(\mathbf{x},\mathbf{y}) \,\mathrm{d}\mathbf{x} \xrightarrow{a.e.} f(\mathbf{y}) \quad \text{as} \quad \beta \downarrow 0$$

Ill-posed equation: Rf = g

$$\phi_{\beta}(\mathbf{x}, \mathbf{y}) := \frac{1}{\beta^n} \phi\left(\frac{\mathbf{x} - \mathbf{y}}{\beta}\right)$$

$$f_{\beta}(\mathbf{y}) := \int f(\mathbf{x})\phi_{\beta}(\mathbf{x}, \mathbf{y}) \,\mathrm{d}\mathbf{x} \xrightarrow{a.e.} f(\mathbf{y}) \quad \text{as} \quad \beta \downarrow 0$$

$$\overbrace{\langle f, \phi_{\beta}(\cdot, \mathbf{y}) \rangle}_{R^*\psi_{\beta}(\mathbf{y})}$$

Approximate inverses

$$\psi_{\beta}(\mathbf{y}) = (R^*)^{-1} \phi_{\beta}(\cdot, \mathbf{y})$$

 $\psi_{\beta}(\mathbf{y}) = (R^*)^{-1} \phi_{\beta}(\cdot, \mathbf{y})$

 $f_{\beta}(\mathbf{y}) = \langle f, \phi_{\beta}(\cdot, \mathbf{y}) \rangle$

 $\psi_{\beta}(\mathbf{y}) = (R^{*})^{-1} \phi_{\beta}(\cdot, \mathbf{y})$ $f_{\beta}(\mathbf{y}) = \langle f, \phi_{\beta}(\cdot, \mathbf{y}) \rangle$ $= \langle f, R^{*} \psi_{\beta}(\mathbf{y}) \rangle$

 ψ_{β} is referred to as a *reconstruction kernel*

Outline

Introduction
Approximate inverses
Fourier synthesis
Variational theorems
Beudo-commutants

Fourier Synthesis

Recover a function from a partial and approximate knowledge of its Fourier transform.

Example 1: Aperture synthesis

Example 1: Aperture synthesis

Example 2: MRI

Standard acquisitions:

Example 2: MRI

Non-Cartesian and sparse acquisitions:

Fourier extrapolation (Lannes *et al*)

Fourier extrapolation (Lannes *et al*)

Let *V* and *W* be subsets of \mathbb{R}^p . Assume that *V* is bounded and that *W* has a non-empty interior. Recover $f_0 \in L^2(V)$ from the knowledge of its Fourier transform on *W*.

Fourier extrapolation (Lannes *et al*)

Let V and W be subsets of \mathbb{R}^p . Assume that V is bounded and that W has a non-empty interior. Recover $f_0 \in L^2(V)$ from the knowledge of its Fourier transform on W.

Truncated Fourier operator:

$$\begin{array}{rcccc} T_W \colon & L^2(V) & \longrightarrow & L^2(W) \\ & f & \longmapsto & T_W f := \mathbbm{1}_W \hat{f} = \mathbbm{1}_W U f \end{array}$$

$$(T_W f)(\xi) = \int_{\mathbb{R}^d} \underbrace{e^{-2i\pi \langle x,\xi\rangle} \mathbb{1}_V(x) \mathbb{1}_W(\xi)}_{\alpha(x,\xi) \in L^2(\mathbb{R}^d \times \mathbb{R}^d)} f(x) \, \mathrm{d}x.$$

$$(T_W f)(\xi) = \int_{\mathbb{R}^d} \underbrace{e^{-2i\pi \langle x,\xi\rangle} \mathbb{1}_V(x) \mathbb{1}_W(\xi)}_{\alpha(x,\xi) \in L^2(\mathbb{R}^d \times \mathbb{R}^d)} f(x) \, \mathrm{d}x.$$

 \hookrightarrow T_W is Hilbert-Schmidt

$$(T_W f)(\xi) = \int_{\mathbb{R}^d} \underbrace{e^{-2i\pi \langle x,\xi \rangle} \mathbb{1}_V(x) \mathbb{1}_W(\xi)}_{\alpha(x,\xi) \in L^2(\mathbb{R}^d \times \mathbb{R}^d)} f(x) \, \mathrm{d}x.$$

\hookrightarrow T_W is Hilbert-Schmidt

Reminder The Fourier transform of compactly supported functions are entire functions

$$(T_W f)(\xi) = \int_{\mathbb{R}^d} \underbrace{e^{-2i\pi \langle x,\xi \rangle} \mathbb{1}_V(x) \mathbb{1}_W(\xi)}_{\alpha(x,\xi) \in L^2(\mathbb{R}^d \times \mathbb{R}^d)} f(x) \, \mathrm{d}x.$$

\hookrightarrow T_W is Hilbert-Schmidt

Reminder The Fourier transform of compactly supported functions are entire functions

$$\rightarrow$$
 T_W is injective

Thus, $T_W^{\star}T_W$ is compact, injective, Hermitian, positive.

Thus, $T_W^{\star}T_W$ is compact, injective, Hermitian, positive.

 \hookrightarrow T_W^{-1} : ran $T_W \to L^2(V)$ is unbounded

Thus, $T_W^{\star}T_W$ is compact, injective, Hermitian, positive.

- \hookrightarrow T_W^{-1} : ran $T_W \to L^2(V)$ is unbounded
- \hookrightarrow ran T_W is not closed

Thus, $T_W^{\star}T_W$ is compact, injective, Hermitian, positive.

- \hookrightarrow T_W^{-1} : ran $T_W \to L^2(V)$ is unbounded
- \hookrightarrow ran T_W is not closed
- \hookrightarrow T_W^+ is unbounded and $\mathcal{D}(T_W^+) \subsetneq L^2(W)$

Thus, $T_W^{\star}T_W$ is compact, injective, Hermitian, positive.

- \hookrightarrow T_W^{-1} : ran $T_W \to L^2(V)$ is unbounded
- \hookrightarrow ran T_W is not closed
- \hookrightarrow T_W^+ is unbounded and $\mathcal{D}(T_W^+) \subsetneq L^2(W)$

 $\mathcal{D}(T_W^+)$ is a dense subset of $L^2(W)$

Thus, $T_W^{\star}T_W$ is compact, injective, Hermitian, positive.

$$\hookrightarrow$$
 T_W^{-1} : ran $T_W \to L^2(V)$ is unbounded

- \hookrightarrow ran T_W is not closed
- $\rightarrow T_W^+ \text{ is unbounded and } \mathcal{D}(T_W^+) \subsetneq L^2(W)$ $\mathcal{D}(T_W^+) \text{ is a dense subset of } L^2(W)$ $\textbf{Proposition } \lambda_1(T_W^*T_W) < 1.$

Thus, $T_W^{\star}T_W$ is compact, injective, Hermitian, positive.

$$\hookrightarrow$$
 T_W^{-1} : ran $T_W \to L^2(V)$ is unbounded

- \hookrightarrow ran T_W is not closed
- \hookrightarrow T_W^+ is unbounded and $\mathcal{D}(T_W^+) \subsetneq L^2(W)$

 $\mathcal{D}(T_W^+)$ is a dense subset of $L^2(W)$

Proposition $\lambda_1(T_W^{\star}T_W) < 1.$

Proposition Assume that $\Omega \subseteq \mathbb{R}^d$ is such that Ω^c is bounded. Then,

- (i) T_{Ω} is bounded and injective;
- (ii) ran T_{Ω} is closed;
- (iii) T_{Ω}^{-1} : ran $T_{\Omega} \to L^2(V)$ is bounded.

Proposition Assume that $\Omega \subseteq \mathbb{R}^d$ is such that Ω^c is bounded. Then,

- (i) T_{Ω} is bounded and injective;
- (ii) ran T_{Ω} is closed;
- (iii) T_{Ω}^{-1} : ran $T_{\Omega} \to L^2(V)$ is bounded.

Reason

 $T^{\star}_{\Omega}T_{\Omega} = I - T^{\star}_{\Omega^c}T_{\Omega^c}$

 $T_{\Omega}^{\star}T_{\Omega} \text{ can be diagonalized, with eigenvalues}$ $\mu_{k} := \lambda_{k}(T_{\Omega}^{\star}T_{\Omega}) = 1 - \lambda_{k}(T_{\Omega^{c}}^{\star}T_{\Omega^{c}})$

Proposition Assume that $\Omega \subseteq \mathbb{R}^d$ is such that Ω^c is bounded. Then,

- (i) T_{Ω} is bounded and injective;
- (ii) ran T_{Ω} is closed;
- (iii) T_{Ω}^{-1} : ran $T_{\Omega} \to L^2(V)$ is bounded.

Reason

$$T_{\Omega}^{\star}T_{\Omega} = I - T_{\Omega^{c}}^{\star}T_{\Omega^{c}}$$

$$T_{\Omega}^{\star}T_{\Omega} \text{ can be diagonalized, with eigenvalues}$$

$$\mu_{k} := \lambda_{k}(T_{\Omega}^{\star}T_{\Omega}) = 1 - \lambda_{k}(T_{\Omega^{c}}^{\star}T_{\Omega^{c}})$$

$$0 \quad \mu_{1} \qquad 1$$

Minimize
$$\frac{1}{2} \|g - T_W f\|_{L^2(W)}^2 + \frac{\alpha}{2} \|\mathbb{1}_{W_\beta} U f\|_{L^2(W_\beta)}^2$$

Minimize
$$\frac{1}{2} \|g - T_W f\|_{L^2(W)}^2 + \frac{\alpha}{2} \|\mathbb{1}_{W_{\beta}} U f\|_{L^2(W_{\beta})}^2$$

 W_{β} : complement of $B_{1/\beta}$

Minimize
$$\frac{1}{2} \|g - T_W f\|_{L^2(W)}^2 + \frac{\alpha}{2} \|\mathbb{1}_{W_\beta} U f\|_{L^2(W_\beta)}^2$$

W_{β} : complement of $B_{1/\beta}$ New object to be reconstructed: $\phi_{\beta} * f_0$

Minimize
$$\frac{1}{2} \|g - T_W f\|_{L^2(W)}^2 + \frac{\alpha}{2} \|\mathbb{1}_{W_\beta} U f\|_{L^2(W_\beta)}^2$$

W_{β} : complement of $B_{1/\beta}$ New object to be reconstructed: $\phi_{\beta} * f_0$ $\phi_{\beta} := U^{-1} \mathbb{1}_{B_{1/\beta}}$

Minimize
$$\frac{1}{2} \left\| \hat{\phi}_{\beta} g - T_W f \right\|_{L^2(W)}^2 + \frac{\alpha}{2} \left\| (1 - \hat{\phi}_{\beta}) \hat{f} \right\|_{L^2(\mathbb{R}^d)}^2$$

s.t. $f \in L^2(V)$

Minimize
$$\frac{1}{2} \left\| \hat{\phi}_{\beta} g - T_W f \right\|_{L^2(W)}^2 + \frac{\alpha}{2} \left\| (1 - \hat{\phi}_{\beta}) \hat{f} \right\|_{L^2(\mathbb{R}^d)}^2$$

s.t. $f \in L^2(V)$

$$\phi_{\beta}(x) = \frac{1}{\beta^d} \phi\left(\frac{x}{\beta}\right)$$

Minimize
$$\frac{1}{2} \left\| \hat{\phi}_{\beta} g - T_W f \right\|_{L^2(W)}^2 + \frac{\alpha}{2} \left\| (1 - \hat{\phi}_{\beta}) \hat{f} \right\|_{L^2(\mathbb{R}^d)}^2$$

s.t. $f \in L^2(V)$

Regularized data: $T_W(\phi_\beta * f_0) = \hat{\phi}_\beta T_W f_0 \approx \hat{\phi}_\beta g$

Minimize
$$\frac{1}{2} \left\| \hat{\phi}_{\beta} g - T_W f \right\|_{L^2(W)}^2 + \frac{\alpha}{2} \left\| (1 - \hat{\phi}_{\beta}) \hat{f} \right\|_{L^2(\mathbb{R}^d)}^2$$

s.t. $f \in L^2(V)$

Regularized data: $T_W(\phi_\beta * f_0) = \hat{\phi}_\beta T_W f_0 \approx \hat{\phi}_\beta g$ **Remark** On denoting $C_\beta : f \mapsto \phi_\beta * f$ and $\Phi_\beta : g \mapsto \hat{\phi}_\beta g$, we have the *pseudo-commutation*: $T_W C_\beta = \Phi_\beta T_W$

Well-posedness

 $(\mathcal{P}$

(A,
$$\beta$$
) Minimize $\frac{1}{2} \left\| \hat{\phi}_{\beta}g - T_W f \right\|^2 + \frac{\alpha}{2} \left\| (1 - \hat{\phi}_{\beta})\hat{f} \right\|^2$
s.t. $f \in L^2(V)$

Well-posedness

Definition
$$\langle f_1, f_2 \rangle_{\beta} := \int_{\mathbb{R}^d} |1 - \hat{\phi}_{\beta}|^2 U f_1 \overline{U f_2}$$

$$(\mathcal{P}_{\alpha,\beta})$$

nimize
$$\frac{1}{2} \left\| \hat{\phi}_{\beta} g - T_W f \right\|^2 + \frac{\alpha}{2} \left\| (1 - \hat{\phi}_{\beta}) \hat{f} \right\|^2$$

s.t. $f \in L^2(V)$

Well-posedness

 $(\mathcal{P}_{lpha,eta}$

Definition $\langle f_1, f_2 \rangle_{\beta} := \int_{\mathbb{R}^d} |1 - \hat{\phi}_{\beta}|^2 U f_1 \overline{U} f_2$ **Lemma** $\langle \cdot, \cdot \rangle_{\beta}$ is an inner product which turns $L^2(V)$ into a Hilbert space. The corresponding norm $\|\cdot\|_{\beta}$ is equivalent to $\|\cdot\|_{L^2(V)}$.

$$\begin{array}{|c|c|c|} \mbox{Minimize} & \frac{1}{2} \left\| \hat{\phi}_{\beta}g - T_W f \right\|^2 + \frac{\alpha}{2} \left\| (1 - \hat{\phi}_{\beta}) \hat{f} \right\|^2 \\ \mbox{s.t.} & f \in L^2(V) \end{array}$$

Definition $\langle f_1, f_2 \rangle_{\beta} := \int_{\mathbb{R}^d} |1 - \hat{\phi}_{\beta}|^2 U f_1 \overline{U} f_2$ **Lemma** $\langle \cdot, \cdot \rangle_{\beta}$ is an inner product which turns $L^2(V)$ into a Hilbert space. The corresponding norm $\|\cdot\|_{\beta}$ is equivalent to $\|\cdot\|_{L^2(V)}$.

Proposition Let $\alpha, \beta > 0$ be fixed. Then $(\mathcal{P}_{\alpha,\beta})$ has a unique solution $f_{\alpha,\beta}$, which depends continuously on $g \in L^2(W)$.

(a) Minimize
$$\frac{1}{2} \left\| \hat{\phi}_{\beta} g - T_W f \right\|^2 + \frac{\alpha}{2} \left\| (1 - \hat{\phi}_{\beta}) \hat{f} \right\|^2$$

s.t. $f \in L^2(V)$

Outline

Introduction
Approximate inverses
Fourier synthesis
Variational theorems
Pseudo-commutants

For simplicity of notation: $T = T_W$, and $f_\beta = f_{\alpha,\beta}$

For simplicity of notation: $T = T_W$, and $\overline{f_\beta} = \overline{f_{\alpha,\beta}}$

Minimize
$$\frac{1}{2} \left\| \hat{\phi}_{\beta}g - Tf \right\|^{2} + \frac{\alpha}{2} \left\| (1 - \hat{\phi}_{\beta})\hat{f} \right\|^{2}$$

s.t. $f \in L^{2}(V)$
For simplicity of notation: $T = T_W$, and $f_\beta = f_{\alpha,\beta}$

Minimize
$$\frac{1}{2} \left\| \hat{\phi}_{\beta} g - T f \right\|^2 + \frac{\alpha}{2} \left\| (1 - \hat{\phi}_{\beta}) \hat{f} \right\|^2$$

s.t. $f \in L^2(V)$

 $H^{s}(\mathbb{R}^{2}) := \left\{ f \in L^{2}(\mathbb{R}^{2}) \mid \int \left(1 + \|\xi\|^{2}\right)^{s} \left| \hat{f}(\xi) \right|^{2} \mathrm{d}\xi < \infty \right\}$

Theorem Assume that

$\square \alpha > 0$ (fixed)

Theorem Assume that

$\square \alpha > 0$ (fixed)

$\phi \in L^1(\mathbb{R}^d)$ with $\int \phi(x) \, \mathrm{d}x = 1$ (i.e. $\hat{\phi}(0) = 1$)

Theorem Assume that • $\alpha > 0$ (fixed) • $\phi \in L^1(\mathbb{R}^d)$ with $\int \phi(x) \, dx = 1$ (*i.e.* $\hat{\phi}(0) = 1$) • $|1 - \hat{\phi}(\xi)| \sim_{\xi \to 0} K ||\xi||^s$ for some K, s > 0

Theorem Assume that = $\alpha > 0$ (fixed) = $\phi \in L^1(\mathbb{R}^d)$ with $\int \phi(x) \, dx = 1$ (*i.e.* $\hat{\phi}(0) = 1$) = $|1 - \hat{\phi}(\xi)| \sim_{\xi \to 0} K ||\xi||^s$ for some K, s > 0= $\forall \xi \in \mathbb{R}^d \setminus \{0\}, \hat{\phi}(\xi) \neq 1$

Theorem Assume that = $\alpha > 0$ (fixed) = $\phi \in L^1(\mathbb{R}^d)$ with $\int \phi(x) \, dx = 1$ (*i.e.* $\hat{\phi}(0) = 1$) = $|1 - \hat{\phi}(\xi)| \sim_{\xi \to 0} K ||\xi||^s$ for some K, s > 0= $\forall \xi \in \mathbb{R}^d \setminus \{0\}, \hat{\phi}(\xi) \neq 1$

If $g \in T_W(L^2(V) \cap H^s(\mathbb{R}^d))$, then $f_\beta \to T_W^+ g$ strongly as $\beta \downarrow 0$.

Step 1:
$$(f_{\beta})_{\beta \in (0,1]}$$
 is bounded

Step 1: $(f_{\beta})_{\beta \in (0,1]}$ is boundedStep 2: $(f_{\beta})_{\beta \in (0,1]}$ converges weakly to T_W^+g

Step 1: $(f_{\beta})_{\beta \in (0,1]}$ is bounded Step 2: $(f_{\beta})_{\beta \in (0,1]}$ converges weakly to $T_W^+ g$ $\beta_n \downarrow 0, f_n := f_{\beta_n}$

Step 1: $(f_{\beta})_{\beta \in (0,1]}$ is bounded Step 2: $(f_{\beta})_{\beta \in (0,1]}$ converges weakly to $T_W^+ g$ $\beta_n \downarrow 0, f_n := f_{\beta_n}$ $\exists (f_{n_k}) \rightharpoonup T_W^+ g$

Step 1: $(f_{\beta})_{\beta \in (0,1]}$ is bounded Step 2: $(f_{\beta})_{\beta \in (0,1]}$ converges weakly to $T_W^+ g$ $\beta_n \downarrow 0, f_n := f_{\beta_n}$ $\exists (f_{n_k}) \rightharpoonup T_W^+ g$

Step 3: The convergence is in fact strong

Step 1: $(f_{\beta})_{\beta \in (0,1]}$ is bounded Step 2: $(f_{\beta})_{\beta \in (0,1]}$ converges weakly to $T_W^+ g$ $\beta_n \downarrow 0, f_n := f_{\beta_n}$ $\exists (f_{n_k}) \rightharpoonup T_W^+ g$ Step 3: The convergence is in fact strong

 (f_n) bounded `

$$\lim_{R \to \infty} \sup_{n} \int_{\|x\| > R} |f_n(x)|^2 \, \mathrm{d}x = 0$$

$$\sup_{n} \|\mathcal{T}_h f_n - f_n\| \to 0 \text{ as } \|h\| \to 0$$

$$\Rightarrow$$
 (f_n) precompact

Step 1: $(f_{\beta})_{\beta \in (0,1]}$ is bounded Step 2: $(f_{\beta})_{\beta \in (0,1]}$ converges weakly to $T_W^+ g$ $\beta_n \downarrow 0, f_n := f_{\beta_n}$ $\exists (f_{n_k}) \rightharpoonup T_W^+ g$ Step 3: The convergence is in fact strong (f_n) is bounded (Step 1)

Step 1: $(f_{\beta})_{\beta \in (0,1]}$ is bounded Step 2: $(f_{\beta})_{\beta \in (0,1]}$ converges weakly to T_W^+g $\beta_n \downarrow 0, f_n := f_{\beta_n}$ $\blacksquare \exists (f_{n_k}) \rightharpoonup T_W^+ g$ Step 3: The convergence is in fact strong (f_n) is bounded (Step 1) V bounded $\hookrightarrow \lim_{R \to \infty} \sup_{n} \int_{\|x\| > R} |f_n(x)|^2 dx = 0$

Step 1: $(f_{\beta})_{\beta \in (0,1]}$ is bounded Step 2: $(f_{\beta})_{\beta \in (0,1]}$ converges weakly to T_W^+g $\beta_n \downarrow 0, f_n := f_{\beta_n}$ $\blacksquare \exists (f_{n_k}) \rightharpoonup T_W^+ g$ Step 3: The convergence is in fact strong (f_n) is bounded (Step 1) V bounded $\hookrightarrow \lim_{R \to \infty} \sup_{n} \int_{\|x\| > R} |f_n(x)|^2 dx = 0$ \blacksquare sup_n $\|\mathcal{T}_h f_n - f_n\| \to 0$ as $\|h\| \to 0$

$$\left|1 - \hat{\phi}(\xi)\right| \sim_{\xi \to 0} \left\|\xi\right\|^s$$

$$\left| 1 - \hat{\phi}(\xi) \right| \sim_{\xi \to 0} \left\| \xi \right\|^s$$
$$\forall \xi \in \mathbb{R}^d \setminus \{0\}, \quad \hat{\phi}(\xi) \neq 1$$

$$\begin{aligned} \left| 1 - \hat{\phi}(\xi) \right| \sim_{\xi \to 0} \left\| \xi \right\|^s \\ \forall \xi \in \mathbb{R}^d \setminus \{0\}, \quad \hat{\phi}(\xi) \neq 1 \\ \hat{\phi} \colon \xi \mapsto \exp\left(-\|\xi\|^s\right), \quad s \in (0, 2] \end{aligned}$$

$$\begin{aligned} \left| 1 - \hat{\phi}(\xi) \right| \sim_{\xi \to 0} \left\| \xi \right\|^s \\ \forall \xi \in \mathbb{R}^d \setminus \{0\}, \quad \hat{\phi}(\xi) \neq 1 \\ \hat{\phi} \colon \xi \mapsto \exp\left(-\|\xi\|^s\right), \quad s \in (0, 2] \\ \phi \colon x \mapsto U^{-1} \exp\left(-\|\cdot\|^s\right)(x) \end{aligned}$$

$$\begin{aligned} \left| 1 - \hat{\phi}(\xi) \right| \sim_{\xi \to 0} \left\| \xi \right\|^s \\ \forall \xi \in \mathbb{R}^d \setminus \{0\}, \quad \hat{\phi}(\xi) \neq 1 \\ \hat{\phi} \colon \xi \mapsto \exp\left(-\|\xi\|^s\right), \quad s \in (0, 2] \\ \phi \colon x \mapsto U^{-1} \exp\left(-\|\cdot\|^s\right)(x) \end{aligned}$$

$\hookrightarrow \phi$ is positive, isotropic, radially decreasing, C^{∞}

First extensions

$$RC_{\beta} = \Phi_{\beta}R$$
 with $C_{\beta} := U^{-1}\hat{\phi}_{\beta}U$

First extensions

$$RC_{\beta} = \Phi_{\beta}R$$
 with $C_{\beta} := U^{-1}\hat{\phi}_{\beta}U$

 $R = U^{-1}\hat{k}U$, convolution by k $\hookrightarrow RC_{\beta} = C_{\beta}R$ $\Phi_{\beta} = C_{\beta}$

First extensions

 $RC_{\beta} = \Phi_{\beta}R$ with $C_{\beta} := U^{-1}\hat{\phi}_{\beta}U$

R Radon operator $(Rf)(\boldsymbol{\theta}, s) = \int f(\mathbf{x})\delta(s - \langle \boldsymbol{\theta}, \mathbf{x} \rangle) \, \mathrm{d}\mathbf{x}$ $R(f_1 * f_2) = Rf_1 \circledast Rf_2$ (*) convolution selon s $\hookrightarrow RC_{\beta}f = R(\phi_{\beta} * f) = R\phi_{\beta} \circledast Tf$ $\Phi_{\beta} = (q \mapsto R\phi_{\beta} \circledast q)$

Ill-posed equation : Rf = g avec : $R: F \to G$

Ill-posed equation : Rf = g avec : $R: F \to G$ $f_0 = C_\beta f_0 + (I - C_\beta) f_0$ where C_β approaches I as $\beta \downarrow 0$

Ill-posed equation : Rf = g avec : $R: F \to G$ $f_0 = C_\beta f_0 + (I - C_\beta) f_0$ where C_β approaches I as $\beta \downarrow 0$ Assume there is no operator $\Phi_\beta: G \to G$ such that $RC_\beta = \Phi_\beta R$ Ill-posed equation : Rf = g avec : $R: F \to G$ $f_0 = C_\beta f_0 + (I - C_\beta) f_0$ where C_β approaches I as $\beta \downarrow 0$ Assume there is no operator $\Phi_\beta: G \to G$ such that $RC_\beta = \Phi_\beta R$

Minimize
$$\frac{1}{2} \| RC_{\beta} - XR \|^2$$

s.t. $X \in L(G), X = 0$ on $(\operatorname{ran} R)^{\perp}$

Further extension

$R: L^2(V) \to G, \ G$ Hilbert space C_β convolution by ϕ_β Assume R is still defined on ran C_β

Further extension

 $R: L^{2}(V) \to G, \quad G \text{ Hilbert space}$ $C_{\beta} \text{ convolution by } \phi_{\beta}$ Assume R is still defined on ran C_{β}

 $(\mathcal{P}_{\beta}) \quad \text{Minimize} \quad \frac{1}{2} \left\| \Phi_{\beta}g - Rf \right\|_{G}^{2} + \frac{\alpha}{2} \left\| (I - C_{\beta})f \right\|_{L^{2}(\mathbb{R}^{d})}^{2}$

Further extension

 $R: L^{2}(V) \to G, \quad G \text{ Hilbert space}$ $C_{\beta} \text{ convolution by } \phi_{\beta}$ Assume R is still defined on ran C_{β}

$$\mathcal{P}_{\beta}$$
) Minimize $\frac{1}{2} \left\| \Phi_{\beta}g - Rf \right\|_{G}^{2} + \frac{\alpha}{2} \left\| (I - C_{\beta})f \right\|_{L^{2}(\mathbb{R}^{d})}^{2}$

Minimize $X \mapsto ||RC_{\beta} - XR||$ s.c. $X \in L(G), X = 0$ on $(\operatorname{ran} R)^{\perp}$

Proposition If $RC_{\beta}R^+$ is bounded, then $RC_{\beta}R^+$ has a continuous extension on G which is solution of (\mathcal{Q}_{β}) .
Proposition If $RC_{\beta}R^+$ is bounded, then $RC_{\beta}R^+$ has a continuous extension on G which is solution of (\mathcal{Q}_{β}) .

Remark The operator RCR^+ is bounded if and only if there exists a positive constant K telle que

 $\forall f \in (\ker R)^{\perp}, \quad ||RCf||_F \leq K ||Rf||_G.$

Proposition If $RC_{\beta}R^+$ is bounded, then $RC_{\beta}R^+$ has a continuous extension on G which is solution of (\mathcal{Q}_{β}) .

Remark The operator RCR^+ is bounded if and only if there exists a positive constant K telle que

 $\forall f \in (\ker R)^{\perp}, \quad \|RCf\|_F \le K \|Rf\|_G.$

Theorem With the same assumptions on ϕ as before, assume that $g \in R(L^2(V) \cap H^s(\mathbb{R}^d))$. Then $f_\beta \to R^+g$ strongly as $\beta \downarrow 0$.

Outline

Introduction
Approximate inverses
Fourier synthesis
Variational theorems
Beudo-commutants

Matrix formulation

Definition We call *pseudo-commutant* of a matrix $C \in \mathbb{R}^{n \times n}$ w.r.t. a matrix $R \in \mathbb{R}^{m \times n}$ the unique solution $\Phi \in \mathbb{R}^{m \times m}$ of

(\mathcal{Q}) Minimize $||XR - RC||_F$ s.t. $X \in \mathbb{R}^{m \times m}, X(\ker R^{\top}) = \{\mathbf{0}\}.$ **Definition** We call *pseudo-commutant* of a matrix $C \in \mathbb{R}^{n \times n}$ w.r.t. a matrix $R \in \mathbb{R}^{m \times n}$ the unique solution $\Phi \in \mathbb{R}^{m \times m}$ of

(\mathcal{Q}) Minimize $||XR - RC||_F$ s.t. $X \in \mathbb{R}^{m \times m}, X(\ker R^{\top}) = \{\mathbf{0}\}.$

Proposition The matrix $\Phi = RCR^+$ is the unique solution to (Q), and in the case where R is injective, then R^+R is the identity, so that Φ actually satisfies $\Phi R = RC$.

Spectral functions

Spectral functions

Remark The Frobenius norm satisfies

$$\|M\|_{F}^{2} = \operatorname{tr}(M^{\top}M) = \sum_{j=1}^{m} \sigma_{j}^{2}(M),$$

where $\sigma_1(M) \ge \cdots \ge \sigma_m(M)$ are the singular values of M.

Spectral functions

Remark The Frobenius norm satisfies

$$\|M\|_{F}^{2} = \operatorname{tr}(M^{\top}M) = \sum_{j=1}^{m} \sigma_{j}^{2}(M),$$

where $\sigma_1(M) \ge \cdots \ge \sigma_m(M)$ are the singular values of M.

We shall see that the solution RCR^+ remains unchanged if we replace $\|\cdot\|_F$ in Problem (Q) by any convex spectral function.

Group invariance

Group invariance

Definition A function $F : \mathbb{R}^{m \times n} \to \mathbb{R}$ is said to be orthogonally invariant if F(UMV) = F(M) for all $M \in \mathbb{R}^{m \times n}$ and all $(U, V) \in O(m) \times O(n)$. **Definition** A function $F : \mathbb{R}^{m \times n} \to \mathbb{R}$ is said to be orthogonally invariant if F(UMV) = F(M) for all $M \in \mathbb{R}^{m \times n}$ and all $(U, V) \in O(m) \times O(n)$.

Definition A function $f : \mathbb{R}^m \to \mathbb{R}$ is said to be $\Pi(m)$ -invariant or *absolutely symmetric* if $f(Q\mathbf{x}) = f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^m$ and all $Q \in \Pi(m)$. **Definition** A function $F : \mathbb{R}^{m \times n} \to \mathbb{R}$ is said to be orthogonally invariant if F(UMV) = F(M) for all $M \in \mathbb{R}^{m \times n}$ and all $(U, V) \in O(m) \times O(n)$.

Definition A function $f : \mathbb{R}^m \to \mathbb{R}$ is said to be $\Pi(m)$ -invariant or *absolutely symmetric* if $f(Q\mathbf{x}) = f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^m$ and all $Q \in \Pi(m)$.

Here, $\Pi(m)$ is the group of *signed* permutation matrices of size $m \times m$.

Back to spectral functions

Back to spectral functions

Back to spectral functions

$$\boldsymbol{\sigma} \colon \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{m}$$
$$M \longmapsto \boldsymbol{\sigma}(M) := (\sigma_1(M), \dots, \sigma_m(M))$$

Proposition A function $F : \mathbb{R}^{m \times n} \to \mathbb{R}$ is orthogonally invariant if and only if it satisfies

 $F = F \circ \operatorname{diag}_{m \times n} \circ \boldsymbol{\sigma}.$

In such a case, $f := F \circ \operatorname{diag}_{m \times n}$ is the unique absolutely symmetric function such that $F = f \circ \sigma$.

Remarkable facts

Theorem Let *F* be orthogonally invariant, and let $f := F \circ \operatorname{diag}_{m \times n}$. Then *F* is convex if and only if *f* is convex.

Theorem Let *F* be orthogonally invariant, and let $f := F \circ \operatorname{diag}_{m \times n}$. Then *F* is convex if and only if *f* is convex.

Theorem [A. S. Lewis] Let F be orthogonally invariant, and let $f := F \circ \operatorname{diag}_{m \times n}$. Then, for all $M \in \mathbb{R}^{m \times n}$, the subdifferential of F at M is given by

{ $U \operatorname{diag}_{m \times n}(\boldsymbol{\xi}) V | \boldsymbol{\xi} \in \partial f(\boldsymbol{\sigma}(M)), U \in \mathcal{O}(m), V \in \mathcal{O}(n)$ }.

Theorem [X Bonnefond and PM]

Theorem [X Bonnefond and PM]

Let $R \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{n \times n}$.

Theorem [X Bonnefond and PM]

Let $R \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{n \times n}$.

Let $\mathcal{F}(X) = F(XR - RC)$, in which *F* is any convex orthogonaly invariant function.

Let $R \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{n \times n}$.

Let $\mathcal{F}(X) = F(XR - RC)$, in which *F* is any convex orthogonaly invariant function.

Then RCR^+ is a solution to

Thank you for your attention !