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Mollifiers...

... in approximation theory:

Reminder Let ϕ ∈ L1(Rn) be such that
∫
ϕ(x) dx = 1.

For everyε > 0, let

ϕε(x) :=
1

εn
ϕ

(x

ε

)

.

Let p ∈ [1,∞). Then, for everyf ∈ Lp(Rn),

‖ϕε ∗ f − f ‖p −→ 0 as ε −→ 0.
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Mollifiers...

... in the theory of inverse problems:

Ill-posed operator equation:Rf = g0

Example form imaging:

f ∈ L2(V ), whereV ⊂ R
2 is the field

R is some integral operator

A reasonable objective: the reconstruction ofϕβ ∗ f
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Ill-posed equation:Rf = g

Mollifier: φ continuous, nonnegative, with
∫
φ = 1

φβ(x,y) :=
1

βn
φ

(
x − y

β
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fβ(y) :=
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Approximate inverses (Louis, Maass)

Ill-posed equation:Rf = g

Mollifier: φ continuous, nonnegative, with
∫
φ = 1

φβ(x,y) :=
1

βn
φ

(
x − y

β

)

fβ(y) :=

∫

f(x)φβ(x,y) dx
a.e.
−→ f(y) as β ↓ 0

︸ ︷︷ ︸

〈f, φβ(·,y)
︸ ︷︷ ︸

R∗ψβ(y)

〉
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Approximate inverses

Assumption:φβ(·,y) ∈ ranR∗, and one can calculate
explicitly

ψβ(y) = (R∗)−1φβ(·,y)

fβ(y) = 〈f, φβ(·,y)〉

= 〈f,R∗ψβ(y)〉

= 〈Rf, ψβ(y)〉

= 〈g0, ψβ(y)〉

ψβ is referred to as areconstruction kernel
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Fourier Synthesis

Recover a function from a partial and

approximate knowledge of its Fourier

transform.
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Example 2: MRI

Standard acquisitions:
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Example 2: MRI

Non-Cartesian and sparse acquisitions:
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Let V andW be subsets ofRp. Assume thatV is
bounded and thatW has a non-empty interior. Recover
f0 ∈ L2(V ) from the knowledge of its Fourier transform
onW .
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Fourier extrapolation (Lannes et al)

Let V andW be subsets ofRp. Assume thatV is
bounded and thatW has a non-empty interior. Recover
f0 ∈ L2(V ) from the knowledge of its Fourier transform
onW .

Truncated Fourier operator:

TW : L2(V ) −→ L2(W )

f 7−→ TWf := 1W f̂ = 1W Uf.
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Properties ofTW

(TWf)(ξ) =

∫

Rd

e−2iπ〈x,ξ〉
1V (x)1W (ξ)

︸ ︷︷ ︸
f(x) dx.

α(x, ξ)∈ L2(Rd ×R
d)
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Properties ofTW

(TWf)(ξ) =

∫

Rd

e−2iπ〈x,ξ〉
1V (x)1W (ξ)

︸ ︷︷ ︸
f(x) dx.

α(x, ξ)∈ L2(Rd ×R
d)

→֒ TW is Hilbert-Schmidt

Reminder The Fourier transform of compactly
supported functions are entire functions

→֒ TW is injective
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Properties ofTW

Thus,T ⋆WTW is compact, injective, Hermitian, positive.

→֒ T−1
W : ranTW → L2(V ) is unbounded

→֒ ranTW is not closed

→֒ T+
W is unbounded andD(T+

W )(L2(W )

D(T+
W ) is a dense subset ofL2(W )

Proposition λ1(T
⋆
WTW ) < 1.

0 1λ1
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Fourier interpolation

Proposition Assume thatΩ ⊆ R
d is such thatΩc is

bounded. Then,

(i) TΩ is bounded and injective;

(ii) ranTΩ is closed;

(iii) T−1
Ω : ranTΩ → L2(V ) is bounded.
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d is such thatΩc is

bounded. Then,

(i) TΩ is bounded and injective;

(ii) ranTΩ is closed;

(iii) T−1
Ω : ranTΩ → L2(V ) is bounded.

Reason
T ⋆ΩTΩ = I − T ⋆ΩcTΩc

T ⋆ΩTΩ can bediagonalized, with eigenvalues
µk := λk(T

⋆
ΩTΩ) = 1 − λk(T

⋆
ΩcTΩc)
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Regularization

Minimize
1

2

∥
∥g − TWf

∥
∥2

L2(W )
+
α

2

∥
∥1Wβ

Uf
∥
∥2

L2(Wβ)
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Regularization

Minimize
1

2

∥
∥g − TWf

∥
∥2

L2(W )
+
α

2

∥
∥1Wβ

Uf
∥
∥2

L2(Wβ)

Wβ: complement ofB1/β

Newobject to be reconstructed: φβ ∗ f0

φβ := U−1
1B1/β
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Apodized version

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

L2(W )
+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

L2(Rd)

s.t. f ∈ L2(V )
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Apodized version

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

L2(W )
+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

L2(Rd)

s.t. f ∈ L2(V )

φβ(x) =
1

βd
φ

(
x

β

)
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Apodized version

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

L2(W )
+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

L2(Rd)

s.t. f ∈ L2(V )

Regularized data: TW (φβ∗f0) = φ̂βTWf0 ≈ φ̂βg
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Apodized version

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

L2(W )
+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

L2(Rd)

s.t. f ∈ L2(V )

Regularized data: TW (φβ∗f0) = φ̂βTWf0 ≈ φ̂βg

Remark On denotingCβ : f 7→ φβ ∗ f and

Φβ : g 7→ φ̂βg, we have thepseudo-commutation:

TWCβ = ΦβTW
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Well-posedness

(Pα,β)

∣
∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TW f

∥
∥
∥

2

+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

s.t. f ∈ L2(V )
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Well-posedness

Definition 〈f1, f2〉β :=
∫

Rd |1 − φ̂β |
2Uf1Uf2

(Pα,β)

∣
∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TW f

∥
∥
∥

2

+
α

2

∥
∥
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∥
∥
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Well-posedness

Definition 〈f1, f2〉β :=
∫

Rd |1 − φ̂β |
2Uf1Uf2

Lemma 〈·, ·〉β is an inner product which turnsL2(V )
into a Hilbert space. The corresponding norm‖ · ‖β is
equivalent to‖ · ‖L2(V ).
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Well-posedness

Definition 〈f1, f2〉β :=
∫

Rd |1 − φ̂β |
2Uf1Uf2

Lemma 〈·, ·〉β is an inner product which turnsL2(V )
into a Hilbert space. The corresponding norm‖ · ‖β is
equivalent to‖ · ‖L2(V ).

Proposition Let α, β > 0 be fixed. Then(Pα,β) has a
unique solutionfα,β, which depends continuously on
g ∈ L2(W ).

(Pα,β)

∣
∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TW f

∥
∥
∥

2

+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2
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For simplicity of notation:T = TW , andfβ = fα,β

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − Tf

∥
∥
∥

2

+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

s.t. f ∈ L2(V )

Hs(R2) :=

{

f ∈ L2(R2)

∣
∣
∣
∣

∫
(
1 + ‖ξ‖2

)s
∣
∣
∣ f̂(ξ)

∣
∣
∣

2

dξ <∞

}
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Main Result

Theorem Assume that

α > 0 (fixed)

φ ∈ L1(Rd) with
∫
φ(x) dx = 1 (i.e. φ̂(0) = 1)

|1 − φ̂(ξ)| ∼ξ→0 K‖ξ‖s for someK, s > 0

∀ξ ∈ R
d \ {0}, φ̂(ξ) 6= 1

If g ∈ TW (L2(V ) ∩Hs(Rd)), thenfβ → T+
W g strongly as

β ↓ 0.
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)
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converges weakly toT+

W g

βn ↓ 0, fn := fβn

∃(fnk
) ⇀ T+

W g

Step 3:The convergence is in fact strong

(fn) bounded

lim
R→∞

sup
n

∫
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2 dx = 0
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Overview of the proof

Step 1:
(
fβ

)

β∈(0,1]
is bounded

Step 2:
(
fβ

)

β∈(0,1]
converges weakly toT+

W g

βn ↓ 0, fn := fβn

∃(fnk
) ⇀ T+

W g

Step 3:The convergence is in fact strong

(fn) is bounded (Step 1)

V bounded →֒ lim
R→∞

sup
n

∫

‖x‖>R
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2 dx = 0
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φ̂ : ξ 7→ exp
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Examples: Lévy kernels

∣
∣
∣1 − φ̂(ξ)

∣
∣
∣ ∼ξ→0

∥
∥ξ

∥
∥s

∀ξ ∈ R
d \ {0}, φ̂(ξ) 6= 1

φ̂ : ξ 7→ exp
(
−‖ξ‖s

)
, s ∈ (0, 2]

φ : x 7→ U−1 exp
(
−‖ · ‖s

)
(x)

→֒ φ is positive, isotropic, radially decreasing,C∞
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Examples: Lévy kernels
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Examples: Lévy kernels
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First extensions

RCβ = ΦβR with Cβ := U−1φ̂βU
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R = U−1k̂U , convolution byk

→֒ RCβ = CβR
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First extensions

RCβ = ΦβR with Cβ := U−1φ̂βU

R Radon operator

(Rf)(θ, s) =

∫

f(x)δ(s− 〈θ,x〉) dx

R(f1 ∗ f2) = Rf1 ⊛Rf2

⊛ convolution selons

→֒ RCβf = R(φβ ∗ f) = Rφβ ⊛ Tf

Φβ = (g 7→ Rφβ ⊛ g)
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Further extension

Ill-posed equation: Rf = g avec: R : F → G
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Further extension

Ill-posed equation: Rf = g avec: R : F → G

f0 = Cβf0 + (I − Cβ)f0

whereCβ approachesI asβ ↓ 0

Assume there is no operatorΦβ : G→ G

such thatRCβ = ΦβR

(Qβ)

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥RCβ −XR

∥
∥2

s.t. X ∈ L(G), X = 0 on (ranR)⊥
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Further extension

R : L2(V ) → G, G Hilbert space
Cβ convolution byφβ

AssumeR is still defined onranCβ
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Further extension

R : L2(V ) → G, G Hilbert space
Cβ convolution byφβ

AssumeR is still defined onranCβ

(Pβ) Minimize
1

2

∥
∥Φβg −Rf

∥
∥2

G
+
α

2

∥
∥(I − Cβ)f

∥
∥2

L2(Rd)
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Further extension

R : L2(V ) → G, G Hilbert space
Cβ convolution byφβ

AssumeR is still defined onranCβ

(Pβ) Minimize
1

2

∥
∥Φβg −Rf

∥
∥2

G
+
α

2

∥
∥(I − Cβ)f

∥
∥2

L2(Rd)

(Qβ)

∣
∣
∣
∣
∣

Minimize X 7→ ‖RCβ −XR‖

s.c. X ∈ L(G), X = 0 on (ranR)⊥
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Proposition If RCβR+ is bounded, thenRCβR+ has a
continuous extension onG which is solution of(Qβ).
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Remark The operatorRCR+ is bounded if and only if
there exists a positive constantK telle que

∀f ∈ (kerR)⊥, ‖RCf ‖F ≤ K‖Rf ‖G.
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Proposition If RCβR+ is bounded, thenRCβR+ has a
continuous extension onG which is solution of(Qβ).

Remark The operatorRCR+ is bounded if and only if
there exists a positive constantK telle que

∀f ∈ (kerR)⊥, ‖RCf ‖F ≤ K‖Rf ‖G.

TheoremWith the same assumptions onφ as before,
assume thatg ∈ R(L2(V ) ∩Hs(Rd)). Thenfβ → R+g
strongly asβ ↓ 0.

– p. 33/41
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Matrix formulation

Definition We callpseudo-commutantof a matrix
C ∈ R

n×n w.r.t. a matrixR ∈ R
m×n the unique solution

Φ ∈ R
m×m of

(Q)

∣
∣
∣
∣

Minimize ‖XR−RC‖F
s.t. X ∈ R

m×m, X(kerR⊤) = {0}.
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Matrix formulation

Definition We callpseudo-commutantof a matrix
C ∈ R

n×n w.r.t. a matrixR ∈ R
m×n the unique solution

Φ ∈ R
m×m of

(Q)

∣
∣
∣
∣

Minimize ‖XR−RC‖F
s.t. X ∈ R

m×m, X(kerR⊤) = {0}.

Proposition The matrixΦ = RCR+ is the unique
solution to(Q), and in the case whereR is injective, then
R+R is the identity, so thatΦ actually satisfies
ΦR = RC.

– p. 35/41
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Spectral functions

Remark The Frobenius norm satisfies

‖M ‖2
F = tr(M⊤M) =

m∑

j=1

σ2
j (M),

whereσ1(M) ≥ · · · ≥ σm(M) are the singular values
of M .
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Spectral functions

Remark The Frobenius norm satisfies

‖M ‖2
F = tr(M⊤M) =

m∑

j=1

σ2
j (M),

whereσ1(M) ≥ · · · ≥ σm(M) are the singular values
of M .

We shall see that the solutionRCR+ remains
unchanged if we replace‖ · ‖F in Problem(Q)
by anyconvex spectral function.
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Group invariance

Definition A functionF : Rm×n → R is said to be
orthogonally invariant ifF (UMV ) = F (M) for all
M ∈ R

m×n and all(U, V ) ∈ O(m)×O(n).
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Group invariance

Definition A functionF : Rm×n → R is said to be
orthogonally invariant ifF (UMV ) = F (M) for all
M ∈ R

m×n and all(U, V ) ∈ O(m)×O(n).

Definition A functionf : Rm → R is said to be
Π(m)-invariant orabsolutely symmetricif
f(Qx) = f(x) for all x ∈ R

m and allQ ∈ Π(m).

Here,Π(m) is the group ofsignedpermutation
matrices of sizem×m.
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Back to spectral functions

σ : R
m×n −→ R

m

M 7−→ σ(M) := (σ1(M), . . . , σm(M))
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Back to spectral functions

σ : R
m×n −→ R

m

M 7−→ σ(M) := (σ1(M), . . . , σm(M))

Proposition A functionF : Rm×n → R is orthogonally
invariant if and only if it satisfies

F = F ◦ diagm×n ◦σ.

In such a case,f := F ◦ diagm×n is the unique
absolutely symmetric function such thatF = f ◦ σ.
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Remarkable facts

TheoremLet F be orthogonally invariant, and let
f := F ◦ diagm×n. ThenF is convex if and only iff is
convex.
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Remarkable facts

TheoremLet F be orthogonally invariant, and let
f := F ◦ diagm×n. ThenF is convex if and only iff is
convex.

Theorem [A. S. Lewis]Let F be orthogonally invariant,
and letf := F ◦ diagm×n. Then, for allM ∈ R

m×n, the
subdifferential ofF atM is given by

{U diagm×n(ξ)V |ξ ∈ ∂f(σ(M)), U ∈ O(m), V ∈ O(n)}.
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Theorem [X Bonnefond and PM]
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Theorem [X Bonnefond and PM]

LetR ∈ R
m×n andC ∈ R

n×n.
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Theorem [X Bonnefond and PM]

LetR ∈ R
m×n andC ∈ R

n×n.

LetF(X) = F (XR−RC), in whichF is any convex
orthogonaly invariant function.
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Theorem [X Bonnefond and PM]

LetR ∈ R
m×n andC ∈ R

n×n.

LetF(X) = F (XR−RC), in whichF is any convex
orthogonaly invariant function.

ThenRCR+ is a solution to

(Q)

∣
∣
∣
∣
∣

Minimize F(X)

s.t. X(kerR⊤) = {0}.
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Thank you for your attention !
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