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Mollifiers...

... in approximation theory:

Reminder Let ϕ ∈ L1(Rn) be such that
∫
ϕ(x) dx = 1.

For everyε > 0, let

ϕε(x) :=
1

εn
ϕ

(x

ε

)

.

Let p ∈ [1,∞). Then, for everyf ∈ Lp(Rn),

‖ϕε ∗ f − f ‖p −→ 0 as ε −→ 0.
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Mollifiers...

... in the theory of inverse problems:

Ill-posed operator equation:Rf = g0

Example form imaging:

f ∈ L2(V ), whereV ⊂ R
2 is the field

R is some integral operator

A reasonable objective: the reconstruction ofϕβ ∗ f
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Ill-posed equation:Rf = g

Mollifier: φ continuous, nonnegative, with
∫
φ = 1

φβ(x,y) :=
1

βn
φ

(
x − y

β
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Approximate inverses (Louis, Maass)

Ill-posed equation:Rf = g

Mollifier: φ continuous, nonnegative, with
∫
φ = 1

φβ(x,y) :=
1

βn
φ

(
x − y

β

)

fβ(y) :=

∫

f(x)φβ(x,y) dx
a.e.
−→ f(y) as β ↓ 0

︸ ︷︷ ︸

〈f, φβ(·,y)
︸ ︷︷ ︸

R∗ψβ(y)

〉
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Approximate inverses

Assumption:φβ(·,y) ∈ ranR∗, and one can calculate
explicitly

ψβ(y) = (R∗)−1φβ(·,y)

fβ(y) = 〈f, φβ(·,y)〉

= 〈f,R∗ψβ(y)〉

= 〈Rf, ψβ(y)〉

= 〈g0, ψβ(y)〉

ψβ is referred to as areconstruction kernel
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Fourier Synthesis

Recover a function from a partial and

approximate knowledge of its Fourier

transform.
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Example 2: MRI

Standard acquisitions:
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Example 2: MRI

Non-Cartesian and sparse acquisitions:
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Fourier extrapolation (Lannes et al)

Let V andW be subsets ofRp. Assume thatV is
bounded and thatW has a non-empty interior. Recover
f0 ∈ L2(V ) from the knowledge of its Fourier transform
onW .
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Fourier extrapolation (Lannes et al)

Let V andW be subsets ofRp. Assume thatV is
bounded and thatW has a non-empty interior. Recover
f0 ∈ L2(V ) from the knowledge of its Fourier transform
onW .

Truncated Fourier operator:

TW : L2(V ) −→ L2(W )

f 7−→ TWf := 1W f̂ = 1W Uf.
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Properties ofTW

(TWf)(ξ) =

∫

Rd

e−2iπ〈x,ξ〉
1V (x)1W (ξ)

︸ ︷︷ ︸
f(x) dx.

α(x, ξ)∈ L2(Rd ×R
d)
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Properties ofTW

(TWf)(ξ) =

∫

Rd

e−2iπ〈x,ξ〉
1V (x)1W (ξ)

︸ ︷︷ ︸
f(x) dx.

α(x, ξ)∈ L2(Rd ×R
d)

→֒ TW is Hilbert-Schmidt

Reminder The Fourier transform of compactly
supported functions are entire functions

→֒ TW is injective
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Properties ofTW

Thus,T ⋆WTW is compact, injective, Hermitian, positive.

→֒ T−1
W : ranTW → L2(V ) is unbounded

→֒ ranTW is not closed

→֒ T+
W is unbounded andD(T+

W )(L2(W )

D(T+
W ) is a dense subset ofL2(W )

Proposition λ1(T
⋆
WTW ) < 1.

0 1λ1
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Fourier interpolation

Proposition Assume thatΩ ⊆ R
d is such thatΩc is

bounded. Then,

(i) TΩ is bounded and injective;

(ii) ranTΩ is closed;

(iii) T−1
Ω : ranTΩ → L2(V ) is bounded.
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d is such thatΩc is

bounded. Then,

(i) TΩ is bounded and injective;

(ii) ranTΩ is closed;

(iii) T−1
Ω : ranTΩ → L2(V ) is bounded.

Reason
T ⋆ΩTΩ = I − T ⋆ΩcTΩc

T ⋆ΩTΩ can bediagonalized, with eigenvalues
µk := λk(T

⋆
ΩTΩ) = 1 − λk(T

⋆
ΩcTΩc)
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Regularization

Minimize
1

2

∥
∥g − TWf

∥
∥2

L2(W )
+
α

2

∥
∥1Wβ

Uf
∥
∥2

L2(Wβ)
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Regularization

Minimize
1

2

∥
∥g − TWf

∥
∥2

L2(W )
+
α

2

∥
∥1Wβ

Uf
∥
∥2

L2(Wβ)

Wβ: complement ofB1/β

Newobject to be reconstructed: φβ ∗ f0

φβ := U−1
1B1/β
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Apodized version

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

L2(W )
+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

L2(Rd)

s.t. f ∈ L2(V )
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Apodized version

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

L2(W )
+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

L2(Rd)

s.t. f ∈ L2(V )

φβ(x) =
1

βd
φ

(
x

β

)

– p. 19/41



Apodized version

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

L2(W )
+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

L2(Rd)

s.t. f ∈ L2(V )

Regularized data: TW (φβ∗f0) = φ̂βTWf0 ≈ φ̂βg
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Apodized version

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TWf

∥
∥
∥

2

L2(W )
+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

L2(Rd)

s.t. f ∈ L2(V )

Regularized data: TW (φβ∗f0) = φ̂βTWf0 ≈ φ̂βg

Remark On denotingCβ : f 7→ φβ ∗ f and

Φβ : g 7→ φ̂βg, we have thepseudo-commutation:

TWCβ = ΦβTW
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Well-posedness

(Pα,β)

∣
∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TW f

∥
∥
∥

2

+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

s.t. f ∈ L2(V )
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Well-posedness

Definition 〈f1, f2〉β :=
∫

Rd |1 − φ̂β |
2Uf1Uf2

(Pα,β)

∣
∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
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∥
∥
∥

2

+
α

2

∥
∥
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∥
∥
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Well-posedness

Definition 〈f1, f2〉β :=
∫

Rd |1 − φ̂β |
2Uf1Uf2

Lemma 〈·, ·〉β is an inner product which turnsL2(V )
into a Hilbert space. The corresponding norm‖ · ‖β is
equivalent to‖ · ‖L2(V ).
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Well-posedness

Definition 〈f1, f2〉β :=
∫

Rd |1 − φ̂β |
2Uf1Uf2

Lemma 〈·, ·〉β is an inner product which turnsL2(V )
into a Hilbert space. The corresponding norm‖ · ‖β is
equivalent to‖ · ‖L2(V ).

Proposition Let α, β > 0 be fixed. Then(Pα,β) has a
unique solutionfα,β, which depends continuously on
g ∈ L2(W ).

(Pα,β)

∣
∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − TW f

∥
∥
∥

2

+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2
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For simplicity of notation:T = TW , andfβ = fα,β

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥
∥ φ̂βg − Tf

∥
∥
∥

2

+
α

2

∥
∥
∥(1 − φ̂β)f̂

∥
∥
∥

2

s.t. f ∈ L2(V )

Hs(R2) :=

{

f ∈ L2(R2)

∣
∣
∣
∣

∫
(
1 + ‖ξ‖2

)s
∣
∣
∣ f̂(ξ)

∣
∣
∣

2

dξ <∞

}
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Main Result

Theorem Assume that

α > 0 (fixed)

φ ∈ L1(Rd) with
∫
φ(x) dx = 1 (i.e. φ̂(0) = 1)

|1 − φ̂(ξ)| ∼ξ→0 K‖ξ‖s for someK, s > 0

∀ξ ∈ R
d \ {0}, φ̂(ξ) 6= 1

If g ∈ TW (L2(V ) ∩Hs(Rd)), thenfβ → T+
W g strongly as

β ↓ 0.
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is bounded

Step 2:
(
fβ

)

β∈(0,1]
converges weakly toT+

W g

βn ↓ 0, fn := fβn

∃(fnk
) ⇀ T+

W g

Step 3:The convergence is in fact strong

(fn) bounded

lim
R→∞

sup
n

∫

‖x‖>R

|fn(x)|
2 dx = 0

sup
n

‖Thfn − fn‖ → 0 as‖h‖ → 0







⇒ (fn) precompact
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Overview of the proof

Step 1:
(
fβ

)

β∈(0,1]
is bounded

Step 2:
(
fβ

)

β∈(0,1]
converges weakly toT+

W g

βn ↓ 0, fn := fβn

∃(fnk
) ⇀ T+

W g

Step 3:The convergence is in fact strong

(fn) is bounded (Step 1)

V bounded →֒ lim
R→∞

sup
n

∫

‖x‖>R

|fn(x)|
2 dx = 0
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∥
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∀ξ ∈ R
d \ {0}, φ̂(ξ) 6= 1

φ̂ : ξ 7→ exp
(
−‖ξ‖s

)
, s ∈ (0, 2]

φ : x 7→ U−1 exp
(
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)
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Examples: Lévy kernels

∣
∣
∣1 − φ̂(ξ)

∣
∣
∣ ∼ξ→0

∥
∥ξ

∥
∥s

∀ξ ∈ R
d \ {0}, φ̂(ξ) 6= 1

φ̂ : ξ 7→ exp
(
−‖ξ‖s

)
, s ∈ (0, 2]

φ : x 7→ U−1 exp
(
−‖ · ‖s

)
(x)

→֒ φ is positive, isotropic, radially decreasing,C∞
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Examples: Lévy kernels
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Examples: Lévy kernels
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RCβ = ΦβR with Cβ := U−1φ̂βU
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RCβ = ΦβR with Cβ := U−1φ̂βU

R = U−1k̂U , convolution byk

→֒ RCβ = CβR

Φβ = Cβ
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First extensions

RCβ = ΦβR with Cβ := U−1φ̂βU

R Radon operator

(Rf)(θ, s) =

∫

f(x)δ(s− 〈θ,x〉) dx

R(f1 ∗ f2) = Rf1 ⊛Rf2

⊛ convolution selons

→֒ RCβf = R(φβ ∗ f) = Rφβ ⊛ Tf

Φβ = (g 7→ Rφβ ⊛ g)

– p. 30/41



Further extension

Ill-posed equation: Rf = g avec: R : F → G
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Further extension

Ill-posed equation: Rf = g avec: R : F → G

f0 = Cβf0 + (I − Cβ)f0

whereCβ approachesI asβ ↓ 0

Assume there is no operatorΦβ : G→ G

such thatRCβ = ΦβR

(Qβ)

∣
∣
∣
∣
∣
∣

Minimize
1

2

∥
∥RCβ −XR

∥
∥2

s.t. X ∈ L(G), X = 0 on (ranR)⊥
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Further extension

R : L2(V ) → G, G Hilbert space
Cβ convolution byφβ

AssumeR is still defined onranCβ
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Further extension

R : L2(V ) → G, G Hilbert space
Cβ convolution byφβ

AssumeR is still defined onranCβ

(Pβ) Minimize
1

2

∥
∥Φβg −Rf

∥
∥2

G
+
α

2

∥
∥(I − Cβ)f

∥
∥2

L2(Rd)
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Further extension

R : L2(V ) → G, G Hilbert space
Cβ convolution byφβ

AssumeR is still defined onranCβ

(Pβ) Minimize
1

2

∥
∥Φβg −Rf

∥
∥2

G
+
α

2

∥
∥(I − Cβ)f

∥
∥2

L2(Rd)

(Qβ)

∣
∣
∣
∣
∣

Minimize X 7→ ‖RCβ −XR‖

s.c. X ∈ L(G), X = 0 on (ranR)⊥

– p. 32/41



Proposition If RCβR+ is bounded, thenRCβR+ has a
continuous extension onG which is solution of(Qβ).
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Remark The operatorRCR+ is bounded if and only if
there exists a positive constantK telle que

∀f ∈ (kerR)⊥, ‖RCf ‖F ≤ K‖Rf ‖G.
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Proposition If RCβR+ is bounded, thenRCβR+ has a
continuous extension onG which is solution of(Qβ).

Remark The operatorRCR+ is bounded if and only if
there exists a positive constantK telle que

∀f ∈ (kerR)⊥, ‖RCf ‖F ≤ K‖Rf ‖G.

TheoremWith the same assumptions onφ as before,
assume thatg ∈ R(L2(V ) ∩Hs(Rd)). Thenfβ → R+g
strongly asβ ↓ 0.

– p. 33/41
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Matrix formulation

Definition We callpseudo-commutantof a matrix
C ∈ R

n×n w.r.t. a matrixR ∈ R
m×n the unique solution

Φ ∈ R
m×m of

(Q)

∣
∣
∣
∣

Minimize ‖XR−RC‖F
s.t. X ∈ R

m×m, X(kerR⊤) = {0}.
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Matrix formulation

Definition We callpseudo-commutantof a matrix
C ∈ R

n×n w.r.t. a matrixR ∈ R
m×n the unique solution

Φ ∈ R
m×m of

(Q)

∣
∣
∣
∣

Minimize ‖XR−RC‖F
s.t. X ∈ R

m×m, X(kerR⊤) = {0}.

Proposition The matrixΦ = RCR+ is the unique
solution to(Q), and in the case whereR is injective, then
R+R is the identity, so thatΦ actually satisfies
ΦR = RC.

– p. 35/41
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Spectral functions

Remark The Frobenius norm satisfies

‖M ‖2
F = tr(M⊤M) =

m∑

j=1

σ2
j (M),

whereσ1(M) ≥ · · · ≥ σm(M) are the singular values
of M .
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Spectral functions

Remark The Frobenius norm satisfies

‖M ‖2
F = tr(M⊤M) =

m∑

j=1

σ2
j (M),

whereσ1(M) ≥ · · · ≥ σm(M) are the singular values
of M .

We shall see that the solutionRCR+ remains
unchanged if we replace‖ · ‖F in Problem(Q)
by anyconvex spectral function.

– p. 36/41
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Group invariance

Definition A functionF : Rm×n → R is said to be
orthogonally invariant ifF (UMV ) = F (M) for all
M ∈ R

m×n and all(U, V ) ∈ O(m)×O(n).
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Group invariance

Definition A functionF : Rm×n → R is said to be
orthogonally invariant ifF (UMV ) = F (M) for all
M ∈ R

m×n and all(U, V ) ∈ O(m)×O(n).

Definition A functionf : Rm → R is said to be
Π(m)-invariant orabsolutely symmetricif
f(Qx) = f(x) for all x ∈ R

m and allQ ∈ Π(m).

Here,Π(m) is the group ofsignedpermutation
matrices of sizem×m.
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Back to spectral functions

σ : R
m×n −→ R

m

M 7−→ σ(M) := (σ1(M), . . . , σm(M))
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Back to spectral functions

σ : R
m×n −→ R

m

M 7−→ σ(M) := (σ1(M), . . . , σm(M))

Proposition A functionF : Rm×n → R is orthogonally
invariant if and only if it satisfies

F = F ◦ diagm×n ◦σ.

In such a case,f := F ◦ diagm×n is the unique
absolutely symmetric function such thatF = f ◦ σ.
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Remarkable facts

TheoremLet F be orthogonally invariant, and let
f := F ◦ diagm×n. ThenF is convex if and only iff is
convex.
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Remarkable facts

TheoremLet F be orthogonally invariant, and let
f := F ◦ diagm×n. ThenF is convex if and only iff is
convex.

Theorem [A. S. Lewis]Let F be orthogonally invariant,
and letf := F ◦ diagm×n. Then, for allM ∈ R

m×n, the
subdifferential ofF atM is given by

{U diagm×n(ξ)V |ξ ∈ ∂f(σ(M)), U ∈ O(m), V ∈ O(n)}.
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Theorem [X Bonnefond and PM]
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Theorem [X Bonnefond and PM]

LetR ∈ R
m×n andC ∈ R

n×n.
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Theorem [X Bonnefond and PM]

LetR ∈ R
m×n andC ∈ R

n×n.

LetF(X) = F (XR−RC), in whichF is any convex
orthogonaly invariant function.
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Theorem [X Bonnefond and PM]

LetR ∈ R
m×n andC ∈ R

n×n.

LetF(X) = F (XR−RC), in whichF is any convex
orthogonaly invariant function.

ThenRCR+ is a solution to

(Q)

∣
∣
∣
∣
∣

Minimize F(X)

s.t. X(kerR⊤) = {0}.
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Thank you for your attention !

– p. 41/41


	Outline
	Outline

	Mollifiers...
	Mollifiers...

	Mollifiers...
	Mollifiers...
	Mollifiers...
	Mollifiers...

	Milestones...
	Milestones...
	Milestones...

	Milestones...
	Milestones...
	Milestones...

	Outline
	Approximate inverses (Louis, Maass)
	Approximate inverses (Louis, Maass)
	Approximate inverses (Louis, Maass)
	Approximate inverses (Louis, Maass)
	Approximate inverses (Louis, Maass)
	Approximate inverses (Louis, Maass)

	Approximate inverses
	Approximate inverses
	Approximate inverses
	Approximate inverses
	Approximate inverses
	Approximate inverses
	Approximate inverses

	Outline
	Fourier Synthesis
	Example 1: Aperture synthesis
	Example 1: Aperture synthesis

	Example 2: MRI
	Example 2: MRI

	Fourier extrapolation (Lannes {it et al})
	Fourier extrapolation (Lannes {it et al})
	Fourier extrapolation (Lannes {it et al})

	Properties of $T_W$
	Properties of $T_W$
	Properties of $T_W$
	Properties of $T_W$
	Properties of $T_W$

	Properties of $T_W$
	Properties of $T_W$
	Properties of $T_W$
	Properties of $T_W$
	Properties of $T_W$
	Properties of $T_W$
	Properties of $T_W$

	Fourier interpolation
	Fourier interpolation
	Fourier interpolation
	Fourier interpolation

	Regularization
	Regularization
	Regularization
	Regularization
	Regularization

	Apodized version
	Apodized version
	Apodized version
	Apodized version
	Apodized version

	Well-posedness
	Well-posedness
	Well-posedness
	Well-posedness
	Outline
	Main Result
	Main Result
	Main Result
	Main Result
	Main Result
	Main Result

	Overview of the proof
	Overview of the proof
	Overview of the proof
	Overview of the proof
	Overview of the proof
	Overview of the proof
	Overview of the proof
	Overview of the proof
	Overview of the proof
	Overview of the proof

	Examples: Lévy kernels
	Examples: Lévy kernels
	Examples: Lévy kernels
	Examples: Lévy kernels
	Examples: Lévy kernels
	Examples: Lévy kernels

	Examples: Lévy kernels
	Examples: Lévy kernels

	First extensions
	First extensions
	First extensions

	Further extension
	Further extension
	Further extension
	Further extension

	Further extension
	Further extension
	Further extension

	Outline
	Matrix formulation 
	Matrix formulation 
	Matrix formulation 

	Spectral functions 
	Spectral functions 
	Spectral functions 

	Group invariance 
	Group invariance 
	Group invariance 
	Group invariance 

	Back to spectral functions 
	Back to spectral functions 
	Back to spectral functions 

	Remarkable facts 
	Remarkable facts 
	Remarkable facts 

	Theorem [X Bonnefond and PM] 
	Theorem [X Bonnefond and PM] 
	Theorem [X Bonnefond and PM] 
	Theorem [X Bonnefond and PM] 


