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lers...

pproximation theory:



Mollifiers...

... In @pproximation theory:

Reminder Letyp € L'(R™) be such thaf p(z)dz = 1.
For every= > 0, let

1 T

pe(2) = (g)
Letp € [1,00). Then, for everyf € LP(R"),

lpe* f—=fllp—0 as e —0.
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Mollifiers...

... In the theory of inverse problems:

lll-posed operator equatioR f = g

Example form imaging:
m [ c L*(V),whereV C R?is the field
m ? IS some integral operator

A reasonable objective: the reconstructionsgf+ f
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Fourier synthesis to approximate inverses:



Milestones...

... from Fourier synthesis to approximate inverses:

A LANNES, S ROQUES& M-J CASANOVE, Sabilized
reconstruction in signal and image processing, J. Mod.
Opt.,1987.
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Milestones...

... from Fourier synthesis to approximate inverses:

A LANNES, S ROQUES& M-J CASANOVE, Sabilized
reconstruction in signal and image processing, J. Mod.
Opt.,1987.

A K Louis& P MaAss, A mollifier method for linear
operator equations of the first kinlkhverse Problems,
1990
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tones...

ational theorems:



Milestones...

... variational theorems:

N ALIBAUD, P M & Y SAESOR, A variational approach
to the inversion of truncated Fourier operatbnserse
Problems, 2009
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N ALIBAUD, P M & Y SAESOR, A variational approach
to the inversion of truncated Fourier operafénserse
Problems, 2009

X. BONNEFOND & P M, A variational approach to the
Inversion of some compact operatdescific Journal of
Optimization,2009
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ximate inverses (Louls, Maass)

ed equationRf = g



Approximate inverses (Louis, Maass)

lll-posed equationRf = ¢

Mollifier: ¢ continuous, nonnegative, with¢ = 1
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Approximate inverses (Louis, Maass)

lll-posed equationRf = g

Mollifier: ¢ continuous, nonnegative, with¢ = 1

_ L (x—Yy
Dp(X,y) = ﬂn¢< 3 )
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Approximate inverses (Louis, Maass)

lll-posed equationRf = g

Mollifier: ¢ continuous, nonnegative, with¢ = 1

bs(X,y) = Wb( 6y)

/f X)bs(x,y) dx 2% f(y) as f 10




Approximate inverses (Louis, Maass)

lll-posed equationRf = g

Mollifier: ¢ continuous, nonnegative, with¢ = 1

bs(X,y) = Wb( 6y)

/f X)bs(x,y) dx 2% f(y) as f 10

fagbﬂ(v )>
H/—/



Ximate inverses




Ximate inverses

ption:¢s(-,y) € ran R*, and one can calculate
tly
Vs(y) = (R") o5, y)



Approximate inverses

Assumption:¢s(-,y) € ran R*, and one can calculate
explicitly

Ps(y) = (R*) " ds(-,y)
fa(y) = (f, ¢5(-,y))
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Approximate inverses

Assumption:¢s(-,y) € ran R*, and one can calculate
explicitly

va(y) = (R") (- y)

f8(y) = (f, 5(-,¥))
= (f, R"¢s(y))
= (Rf,¥5(y))
= (g0, V5(¥))



Approximate inverses

Assumption:¢s(-,y) € ran R*, and one can calculate
explicitly

va(y) = (R") (- y)

f8(y) = (f, 5(-,¥))
= (f, R"¢s(y))
= (Rf,¥5(y))
= (g0, V5(¥))

Y5 IS referred to as aeconstruction kernel
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Recover a function from a partial and
approximate knowledge of its Fourier
transform.
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1S

Aperture synthesi

Example 1
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ple 2: MRI

ard acquisitions:



Example 2. MR

Non-Cartesian and sparse acquisitions:
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Fourier extrapolation (Lannes et al)

Let IV andl be subsets dR?. Assume that’ Is
bounded and thdl” has a non-empty interior. Recover

fo € L*(V) from the knowledge of its Fourier transform
onW'.
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Fourier extrapolation (Lannes et al)

Let IV andl be subsets dR?. Assume that’ Is
bounded and thdl” has a non-empty interior. Recover

fo € L*(V) from the knowledge of its Fourier transform
onW'.

Truncated Fourier operator:

Tyw: L*(V) — L*(W)
f o Twf=1yf=1yUf.
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arties of Ty,




arties of Ty,

2 1)(E) = /}R 2O ()14 (€) f() da.

| e/
oz, &) € L*(R? x RY)

—  Tw Is Hilbert-Schmidt



Properties of Iy

(T 1)(€) = / e 2T (o) Ly () f () da.

R N————————
oz, &) € L*(R* x RY)

— Tw IS

Reminder The Fourier transform of compactly
supported functions are entire functions
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Properties of Iy

(B 1)) = [ 9y (@) l(€) S (o) de
oz, &) € L*(RY x RY)

— Tw IS

Reminder The Fourier transform of compactly
supported functions are entire functions

—  Tw IS
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[Ty, 1S compac)injective, Hermitian, positive.




arties of Ty,

[Ty, 1S compac)injective, Hermitian, positive.

' ran Ty — L%(V) is unbounded




Properties of Iy

Thus, 17,1y, Is , , Hermitian, positive.
— Ty': ranTy — L*(V) is unbounded

— ran 7y IS not closed
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Properties of Iy

Thus, 17,1y, Is , , Hermitian, positive.
— Ty': ranTy — L*(V) is unbounded

— ran 7y IS not closed

— T is unbounded an®(7};,) C L*(W)

D(Ty) is a dense subset éf (W)
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Properties of Iy

Thus, 17,1y, Is , , Hermitian, positive.
— Ty': ranTy — L*(V) is unbounded

— ran 7y IS not closed

— T is unbounded an®(7};,) C L*(W)
D(Ty) is a dense subset &f (1)

Proposition A;(T3,Ty,) < 1.
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Properties of Iy

Thus, 17,1y, Is , , Hermitian, positive.
— Ty': ranTy — L*(V) is unbounded

— ran 7y IS not closed

— T is unbounded an®(7};,) C L*(W)
D(Ty) is a dense subset &f (1)

Proposition A;(T3,Ty,) < 1.

0 A1
| | IR N |
E— B |

T
1T
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Fourier interpolation

Proposition Assume thaf) C R? is such thaf)¢ is
bounded. Then,

() 1 Is bounded and injective;
() ranTq IS closed,;
(iiiy Ty': ranTy — L*(V) is bounded.
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Fourier interpolation

Proposition Assume thaf) C R? is such thaf) is
bounded. Then,

() 1 Is bounded and injective;
() ranTq Is closed,;
(iiiy Ty': ranTy — L*(V) is bounded.
Reason
mIoT, =1—T5.T
= 15T, can bediagonalizedwith eigenvalues
=1 — (T3 1)
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Fourier interpolation

Proposition Assume thaf) C R? is such thaf) is
bounded. Then,

() T Is bounded and injective;
() ran Ty Is closed,;
(iiiy Ty': ranTy — L*(V) is bounded.
Reason
mIoT, =1—T5.T
= 15T, can bediagonalizedwith eigenvalues
=1 — (T3 1)
0 |
|
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larization

. 1 &
PAS 5 Hg —Twf H;(W) T 5 H ]IWBUf HiZ(Wg)



larization

. 1 &
PAS 5 Hg —Twf H?’P(W) T 5 H HWBUf HiZ(Wg)

Wjs: complement of3, /5



Regularization

B 1 ¢
Minimize = [ g =T f |7+ 5 10w, F [0,

W3: complement o5, /5

New object to be reconstructed; * f
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Regularization

B 1 ¢
Minimize = [ g =T f |7+ 5 10w, F [0,

W3: complement o5, /5

New object to be reconstructed; * f

. J7—1
¢ :=U"1p,,
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1zed version

111 2 o 2
ze oo —Tis|,  +3[ -0
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s.t. feL*(V)



1zed version

111 2 o 2
ze oo —Tis|,  +3[ -0
ize - |[dsg —Ti f I LURECOL

s.t. feL*(V)

Gp(r) = —¢

*
g \p




Apodized version

1 2

5 dsg — T fH2 +%H(1—(ﬁﬁ)f
s.t. fe LA(V)

Minimize

L2(R4)

Regularized datalyy (¢s* fo) = gggwao ~ qggg
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Apodized version

Minim; Ly - T 2 Q TR 2
inimize — — — (1 -
5 || 059 fH + 5 H( 0p)f o
s.t. fe L*V)

Regularized datalyy (¢z+ fy) = CgﬁTWf 0~ Qgﬁg

Remark Ondenoting’s: [ — ¢p* f and
®y: g — o9, we have theoseudo-commutation

TwCs = 3T
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nosedness

on (f1fo) 1= Jpal1 = 03 PUAUf



\Well-posedness

Definition = [rall — $sPU AU f
Lemma is an inner product which turng*(V)
Into a Hilbert space. The corresponding narm | ; Is
equivalent ta| - || .2y

(- d)f|

Minimize —Hgbﬁg TWfH +2‘

s.t. feL*V)
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\Well-posedness

Definition = [rall — $sPU AU f

Lemma is an inner product which turng*(1)
Into a Hilbert space. The corresponding narm | ; Is
equivalent ta| - || .2y

Proposition Leta, 8 > 0 be fixed. ThenP, 3) has a
unique solutionf, 3, which depends continuously on

g€ L*(W).

- dpf

Minimize —H¢gg TWfH +2‘

s.t. feL*V)

—p. 23/41



e

roduction
proximate inverses
urier synthesis

riational theorems
eudo-commutants






simplicity of notationI’ = Ty, andfz = f. 3



simplicity of notationI’ = Ty, andfz = f. 3
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Inimize —

S.t. f c L*(V)

o a-ani




simplicity of notationI’ = Ty, andfz = f. 3

1
Inimize —

S.t. f c L*(V)

o a-ani
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Result
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Result

om  Assume that

> ( (fixed)
LY(RY) with [ ¢(x)dz =1 (i.e. $(0) = 1)
— 0(&)] ~eo K[| €| for somek’ s > 0

e R\ {0}, 6(¢) # 1



Main Result

Theorem Assume that

ma > 0 (fixed)
m )< L'Y(RY) with [ ¢(z)dz =1 (i.e. ¢(0) = 1)
# 1= (&)| ~eo K|[£]|* for someK, s > 0

m V¢ € RY\ {0}, 9(&) # 1

If g € T, (L?(V) N H5(RY)), then strongly as
510
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iew of the proof

3(fﬂ)ge(o,1] IS bounded
(f5) se(01) CONVerges weakly td;; g

Bn L0, fr = fﬁn
fur) = Tivg



Overview of the proof

(/8) ge (0.1 1S bOUNded
(f3) se(0.1] CONverges weakly tdy: g

ﬁn l 0, fn c= fﬁn
m () — TVE/FQ

The convergence is in fact strong
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Overview of the proof

(/8) ge (0.1 1S bOUNded

(f3) se(0.1] CONverges weakly tdy: g

ﬁn l 0, fn c= fﬁn
m () — TM_/FQ

The convergence is in fact strong

(f») bounded)

lim Sup/ f(2) 2 dz = 0
2B

R—oo p

sup || 7, fn — full — 0 as||hf| — 0

/

» = (f,,) precompact
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Overview of the proof

(fﬂ)ﬁe(ojl] is bounded
(f3) se(0.1] CONverges weakly tdy: g

ﬁn l 0, fn c= fﬁn
m () — TVE/FQ

The convergence is in fact strong

= (f,) is bounded (Step 1)
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Overview of the proof

(fﬂ)ge(o,u is bounded
(f3) se(0.1] CONVerges weakly tdy; g

677, l 0, fn c= fﬁn
m () — TVE/FQ

The convergence is in fact strong

= (f,) is bounded (Step 1)

R—oo g

= V bounded— lim Sup/ | fu(2)]?dz = 0
| ||>R
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Overview of the proof

(fﬂ)ﬁe(ojl] is bounded
(f3) se(0.1] CONVerges weakly tdy; g

ﬁn l 0, fn c= fﬁn
m () — TVE/FQ

The convergence is in fact strong

= (f,) is bounded (Step 1)

R—oo g

= V bounded— lim Sup/ | fu(2)]?dz = 0
|z

= sup,, | 7. fn — full — 0 as|[h]| — 0
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ples: Levy kernels

11— (6| ~eo [1€1I

A

vE e RU\ {0}, (&) #1

6: & exp(=[I€]17), o (0.2



Examples: Levy kernels

1= 60| ~eo [l
vE e RT\ {0}, o(¢) #1
b: & — exp(—||€]°),
x> Ut exp(—| - [I°) (x)

— ¢ IS positive, iIsotropic, radially decreasing,™



Point spread functions
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Cauchy filter (s=1) Filter for s=0.6

0 0.5 : 0 0.5
€ €

Cauchy kernel (s=1) Kernel for s=0.6
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RCg = ®3R with (s := U_léﬁU



oxtensions

RCg = ®3R with (s := U_légU

R = U'kU, convolution byk
— ROg — CgR
®g = Cg



FIrSt extensions
RCj3 = ®3R with Cjy:= U 'pgU
R Radon operator

(RF)(6, s) = /f x)) dx

R(fi* f2) = Rfi ® Rfs
® convolution selors

RCsf = R(¢p* f) = Rpg®T'f
Oy = (9 +— Rop ® g)
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er extension

osed equation Rf=g¢9 avec:. R: F — G

fo=Csfo+ (I — Cs)fo
whereCj approacheg asj3 | 0



Further extension

lll-posed equation Rf =g avec: R: F — G

Jo = + (L = Cp)fo
whereC's approache$ asj | 0

Assume there Is no operatdp: G — G
such thatRCs = P3R
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Further extension

lll-posed equation Rf =g avec: R: F — G

Jo = + (L = Cp)fo
whereC's approache$ asj | 0

Assume there Is no operatdp: G — G
such thatRCy = ®3RR

Minimize %HRCg—XRHQ
st. X € L(G), X =0 on (ranR)*

(Qp)

—p.31/41



er extension

R: L*(V) — G, G Hilbert space
('3 convolution bygg
Assumer: Is still defined onran Cjp



er extension

R: L*(V) — G, G Hilbert space
('3 convolution bygg
Assumer: Is still defined onran Cjp

.1
Minimize - | P59 — Rf Hé+% | (I—Cp)f Hiz(Rd)



Further extension

R: L?*(V) — G, @G Hilbert space
('3 convolution byg;
AssumerR? Is still defined orran C'

1
(P3) Minimize 5 | ®sg — Rf Hiﬁ% |(I—Cs)f H;(Rd)

(Qp)

Minimize X — |RCy — XR]|
s.c. X e L(G), X=0 on (ranR)*

—p. 32/41



If RC3R™ is bounded, theC3R* has a
continuous extension 0@ which is solution of(Q3).
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Proposition If RC3R™ is bounded, the®RC3R™ has a
continuous extension 0@ which is solution of(Q3).

Remark The operatoRC' R* is bounded if and only if
there exists a positive constakittelle que

Vf € (ker R)", |[RCf|r < K|Rfl|c:
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Proposition If RC3R™ is bounded, the®RC3R™ has a
continuous extension 0@ which is solution of(Q3).

Remark The operatoRC R™ is bounded if and only if
there exists a positive constafittelle que

Vf € (kerR)",  [[RCf|r < K|Rf]|c:

Theorem With the same assumptions oras before,
assume thag ¢ R(L*(V) N H*(R%)). Then
strongly as5 | 0.

—p. 33/41
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Matrix formulation

Definition We call pseudo-commutaimf a matrix
C € R"" w.r.t. a matrixk € R™*" the unique solution
® € R™*"™ of

(Q)

Minimize || XR — RC||r
s.t. X e R™™, X(kerR") = {0}.
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Matrix formulation

Definition We call pseudo-commutaimf a matrix
C € R"" w.r.t. a matrixk € R™*" the unique solution
® € R™*"™ of

) Minimize || XR — RC||r
st. X e R, X(ker R") = {0}.

Proposition The matrix® = RC'R™ is the unique
solution to(Q), and in the case whet is injective, then

RT R is the identity, so thab actually satisfies
dR = RC.

—p. 35/41
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Spectral functions

Remark The Frobenius norm satisfies

|M|% = te(MTM) = Za

whereo (M) > --- > 0,,(M) are the singular values
of M.
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Spectral functions

Remark The Frobenius norm satisfies

M5 =tr(M'M) = 0
F

whereo (M) > --- > 0,,(M) are the singular values
of M.

We shall see that the solutidtC' R remains
unchanged if we replade- || in Problem(Q)
by anyconvex spectral function

—p. 36/41
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Group invariance

Definition A function F': R™*" — R Is said to be
orthogonally invariant it (UMV') = F'(M) for all

M e R and all(U, V) € O(m) x O(n).
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Group invariance

Definition A function F': R™*" — R Is said to be
orthogonally invariant it (UMV') = F'(M) for all

M e R and all(U, V) € O(m) x O(n).

Definition A function f: R™ — R Is said to be
-Invariant orabsolutely symmetrid
f(Qx) = f(x) forallx € R™ and allQ) €
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Group invariance

Definition A function F': R™*" — R Is said to be
orthogonally invariant it (UMV') = F'(M) for all

M e R and all(U, V) € O(m) x O(n).

Definition A function f: R™ — R Is said to be
-Invariant orabsolutely symmetrid
f(Qx) = f(x) forallx € R™ and allQ) €

Here, IS the group ofsignedpermutation
matrices of sizen x m.

—p. 37/41
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to spectral functions

Rmxn Rm



Back to spectral functions

g: R™" — R"™

M +— oM):=(1(M),...,on(M))

Proposition A function £': R™*" — R Is orthogonally
Invariant if and only if it satisfies

F = Fodiag,, ., 00.

In such a case, :— /' o diag, . Isthe unique
absolutely symmetric function such that= f o o.

—p. 38/41
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Remarkable facts

TheoremLet F' be orthogonally invariant, and let
f := F odiag,, ... ThenF'is convex If and only iff Is
CONvex.

—p. 39/41



Remarkable facts

TheoremLet F' be orthogonally invariant, and let
f := F odiag,, ... ThenF'is convex If and only iff Is
CONvex.

Theorem [A. S. Lewis|Let F' be orthogonally invariant,
and letf := F' odiag,,.,,. Then, for allM € R™*", the
subdifferential ofF’ at M is given by

(U diag,,.,(§)V|§ € 0f(a(M)), U € O(m), V € O(n)}.

—p. 39/41
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rem [X Bonnefond and PM]

R™*" andC & R™*",



Theorem [ X Bonnefond and PM]

Let R € R"™*" and(C & R"™*",

Let 7(X) = F(XR — RC), in which F' is any convex
orthogonaly invariant function.
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Theorem [X Bonnefond and PM]

Let R € R"™*" and(C & R"™*",

Let 7(X) = F(XR — RC), in which F' is any convex
orthogonaly invariant function.

ThenRCR™ is a solution to
Minimize F(X)

() s.t. X(kerR") = {0}.

— p. 40/41



Thank you for your attention !
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