Joint Czech-French Workshop on Krylov methods for Inverse Problems
 Survey of regularization by mollification

Pierre Maréchal

Mathematical Institute of Toulouse

Prague, July 19, 2010

Outline

\square Introduction
\square Approximate inverses

- Fourier synthesis
- Variational theorems
\square Pseudo-commutants

Outline

- Introduction
- Approximate inverses
- Fourier synthesis
\square Variational theorems
\square Pseudo-commutants

Mollifiers...

... in approximation theory:

Mollifiers...

... in approximation theory:
Reminder Let $\varphi \in L^{1}\left(\mathbb{R}^{n}\right)$ be such that $\int \varphi(x) \mathrm{d} x=1$. For every $\varepsilon>0$, let

$$
\varphi_{\varepsilon}(x):=\frac{1}{\varepsilon^{n}} \varphi\left(\frac{x}{\varepsilon}\right) .
$$

Let $p \in[1, \infty)$. Then, for every $f \in L^{p}\left(\mathbb{R}^{n}\right)$,

$$
\left\|\varphi_{\varepsilon} * f-f\right\|_{p} \longrightarrow 0 \text { as } \varepsilon \longrightarrow 0
$$

Mollifiers...

... in the theory of inverse problems:

Mollifiers...

... in the theory of inverse problems:
Ill-posed operator equation: $R f=g_{0}$

Mollifiers...

... in the theory of inverse problems:

Ill-posed operator equation: $R f=g_{0}$

Example form imaging:

- $f \in L^{2}(V)$, where $V \subset \mathbb{R}^{2}$ is the field
$\square R$ is some integral operator

Mollifiers...

... in the theory of inverse problems:
Ill-posed operator equation: $R f=g_{0}$
Example form imaging:

- $f \in L^{2}(V)$, where $V \subset \mathbb{R}^{2}$ is the field
$\square R$ is some integral operator
A reasonable objective: the reconstruction of $\varphi_{\beta} * f$

Milestones...

... from Fourier synthesis to approximate inverses:

Milestones...

... from Fourier synthesis to approximate inverses:

A Lannes, S Roques \& M-J Casanove, Stabilized reconstruction in signal and image processing, J. Mod. Opt., 1987.

Milestones...

... from Fourier synthesis to approximate inverses:

A Lannes, S Roques \& M-J Casanove, Stabilized reconstruction in signal and image processing, J. Mod. Opt., 1987.

A K Louis \& P MAASS, A mollifier method for linear operator equations of the first kind, Inverse Problems, 1990.

Milestones...

... variational theorems:

Milestones...

... variational theorems:

N ALIBAUD, P M \& Y SAESOR, A variational approach to the inversion of truncated Fourier operators, Inverse Problems, 2009.

Milestones...

... variational theorems:

N Alibaud, P M \& Y SAESOR, A variational approach to the inversion of truncated Fourier operators, Inverse Problems, 2009.
X. BonNEFOND \& P M, A variational approach to the inversion of some compact operators, Pacific Journal of Optimization, 2009.

Outline

- Introduction
\square Approximate inverses
- Fourier synthesis
- Variational theorems
- Pseudo-commutants

Approximate inverses (Louis, Maass)

Approximate inverses (Louis, Maass)

Ill-posed equation: $R f=g$

Approximate inverses (Louis, Maass)

Ill-posed equation: $R f=g$
Mollifier: ϕ continuous, nonnegative, with $\int \phi=1$

Approximate inverses (Louis, Maass)

Ill-posed equation: $R f=g$
Mollifier: ϕ continuous, nonnegative, with $\int \phi=1$

$$
\phi_{\beta}(\mathrm{x}, \mathrm{y}):=\frac{1}{\beta^{n}} \phi\left(\frac{\mathrm{x}-\mathrm{y}}{\beta}\right)
$$

Approximate inverses (Louis, Maass)

Ill-posed equation: $R f=g$
Mollifier: ϕ continuous, nonnegative, with $\int \phi=1$

$$
\begin{gathered}
\phi_{\beta}(\mathbf{x}, \mathbf{y}):=\frac{1}{\beta^{n}} \phi\left(\frac{\mathbf{x}-\mathbf{y}}{\beta}\right) \\
f_{\beta}(\mathbf{y}):=\int f(\mathbf{x}) \phi_{\beta}(\mathbf{x}, \mathbf{y}) \mathrm{d} \mathbf{x} \xrightarrow{\text { a.e. }} f(\mathbf{y}) \quad \text { as } \quad \beta \downarrow 0
\end{gathered}
$$

Approximate inverses (Louis, Maass)

Ill-posed equation: $R f=g$
Mollifier: ϕ continuous, nonnegative, with $\int \phi=1$

$$
\begin{array}{r}
\phi_{\beta}(\mathbf{x}, \mathbf{y}):=\frac{1}{\beta^{n}} \phi\left(\frac{\mathbf{x}-\mathbf{y}}{\beta}\right) \\
f_{\beta}(\mathbf{y}):=\underbrace{\int f(\mathbf{x}) \phi_{\beta}(\mathbf{x}, \mathbf{y}) \mathrm{d} \mathbf{x}}_{\langle f, \underbrace{\left.\phi_{\beta}(\cdot, \mathbf{y})\right\rangle}_{R^{n} \cdot \psi_{\beta}(\mathrm{y})}} \xrightarrow{\text { a.e. }} f(\mathbf{y}) \text { as } \beta \downarrow 0
\end{array}
$$

Approximate inverses

Approximate inverses

Assumption: $\phi_{\beta}(\cdot, \mathbf{y}) \in \operatorname{ran} R^{*}$, and one can calculate explicitly

$$
\psi_{\beta}(\mathrm{y})=\left(R^{*}\right)^{-1} \phi_{\beta}(\cdot, \mathrm{y})
$$

Approximate inverses

Assumption: $\phi_{\beta}(\cdot, \mathrm{y}) \in \operatorname{ran} R^{*}$, and one can calculate explicitly

$$
\begin{gathered}
\psi_{\beta}(\mathbf{y})=\left(R^{*}\right)^{-1} \phi_{\beta}(\cdot, \mathbf{y}) \\
f_{\beta}(\mathbf{y})=\left\langle f, \phi_{\beta}(\cdot, \mathbf{y})\right\rangle
\end{gathered}
$$

Approximate inverses

Assumption: $\phi_{\beta}(\cdot, \mathrm{y}) \in \operatorname{ran} R^{*}$, and one can calculate explicitly

$$
\begin{aligned}
\psi_{\beta}(\mathbf{y}) & =\left(R^{*}\right)^{-1} \phi_{\beta}(\cdot, \mathbf{y}) \\
f_{\beta}(\mathbf{y}) & =\left\langle f, \phi_{\beta}(\cdot, \mathbf{y})\right\rangle \\
& =\left\langle f, R^{*} \psi_{\beta}(\mathbf{y})\right\rangle
\end{aligned}
$$

Approximate inverses

Assumption: $\phi_{\beta}(\cdot, \mathbf{y}) \in \operatorname{ran} R^{*}$, and one can calculate explicitly

$$
\begin{aligned}
\psi_{\beta}(\mathbf{y}) & =\left(R^{*}\right)^{-1} \phi_{\beta}(\cdot, \mathbf{y}) \\
f_{\beta}(\mathbf{y}) & =\left\langle f, \phi_{\beta}(\cdot, \mathbf{y})\right\rangle \\
& =\left\langle f, R^{*} \psi_{\beta}(\mathbf{y})\right\rangle \\
& =\left\langle R f, \psi_{\beta}(\mathbf{y})\right\rangle
\end{aligned}
$$

Approximate inverses

Assumption: $\phi_{\beta}(\cdot, \mathbf{y}) \in \operatorname{ran} R^{*}$, and one can calculate explicitly

$$
\begin{aligned}
\psi_{\beta}(\mathbf{y}) & =\left(R^{*}\right)^{-1} \phi_{\beta}(\cdot, \mathbf{y}) \\
f_{\beta}(\mathbf{y}) & =\left\langle f, \phi_{\beta}(\cdot, \mathbf{y})\right\rangle \\
& =\left\langle f, R^{*} \psi_{\beta}(\mathbf{y})\right\rangle \\
& =\left\langle R f, \psi_{\beta}(\mathbf{y})\right\rangle \\
& =\left\langle g_{0}, \psi_{\beta}(\mathbf{y})\right\rangle
\end{aligned}
$$

Approximate inverses

Assumption: $\phi_{\beta}(\cdot, \mathbf{y}) \in \operatorname{ran} R^{*}$, and one can calculate explicitly

$$
\begin{aligned}
\psi_{\beta}(\mathbf{y}) & =\left(R^{*}\right)^{-1} \phi_{\beta}(\cdot, \mathbf{y}) \\
f_{\beta}(\mathbf{y}) & =\left\langle f, \phi_{\beta}(\cdot, \mathbf{y})\right\rangle \\
& =\left\langle f, R^{*} \psi_{\beta}(\mathbf{y})\right\rangle \\
& =\left\langle R f, \psi_{\beta}(\mathbf{y})\right\rangle \\
& =\left\langle g_{0}, \psi_{\beta}(\mathbf{y})\right\rangle
\end{aligned}
$$

ψ_{β} is referred to as a reconstruction kernel

Outline

- Introduction
- Approximate inverses
- Fourier synthesis
- Variational theorems
- Pseudo-commutants

Fourier Synthesis

Recover a function from a partial and approximate knowledge of its Fourier transform.

Example 1: Aperture synthesis

Example 1: Aperture synthesis

Example 2: MRI

Standard acquisitions:

Example 2: MRI

Non-Cartesian and sparse acquisitions:

Fourier extrapolation (Lannes et al)

Fourier extrapolation (Lannes et al)

Let V and W be subsets of \mathbb{R}^{p}. Assume that V is bounded and that W has a non-empty interior. Recover $f_{0} \in L^{2}(V)$ from the knowledge of its Fourier transform on W.

Fourier extrapolation (Lannes et al)

Let V and W be subsets of \mathbb{R}^{p}. Assume that V is bounded and that W has a non-empty interior. Recover $f_{0} \in L^{2}(V)$ from the knowledge of its Fourier transform on W.

Truncated Fourier operator:

$$
\begin{aligned}
T_{W}: L^{2}(V) & \longrightarrow L^{2}(W) \\
f & \longmapsto T_{W} f:=\mathbb{1}_{W} \hat{f}=\mathbb{1}_{W} U f .
\end{aligned}
$$

Properties of T_{W}

Properties of T_{W}

$$
\left(T_{W} f\right)(\xi)=\int_{\mathbb{R}^{d}} \underbrace{e^{-2 i \pi(x, \xi)} \mathbb{1}_{V}(x) \mathbb{1}_{W}(\xi)}_{\alpha(x, \xi) \in L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)} f(x) \mathrm{d} x .
$$

Properties of T_{W}

$$
\begin{aligned}
\left(T_{W} f\right)(\xi) & =\int_{\mathbb{R}^{d}} \underbrace{e^{-2 i \pi\langle x, \xi\rangle} \mathbb{1}_{V}(x) \mathbb{1}_{W}(\xi)}_{\alpha(x, \xi) \in L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)} f(x) \mathrm{d} x . \\
& \hookrightarrow T_{W} \text { is Hilbert-Schmidt }
\end{aligned}
$$

Properties of T_{W}

$$
\begin{aligned}
\left(T_{W} f\right)(\xi) & =\int_{\mathbb{R}^{d}} \underbrace{e^{-2 i \pi\langle x, \xi\rangle} \mathbb{1}_{V}(x) \mathbb{1}_{W}(\xi)}_{\alpha(x, \xi) \in L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)} f(x) \mathrm{d} x . \\
& \hookrightarrow T_{W} \text { is Hilbert-Schmidt }
\end{aligned}
$$

Reminder The Fourier transform of compactly supported functions are entire functions

Properties of T_{W}

$$
\begin{aligned}
\left(T_{W} f\right)(\xi) & =\int_{\mathbb{R}^{d}} \underbrace{e^{-2 i \pi\langle x, \xi\rangle} \mathbb{1}_{V}(x) \mathbb{1}_{W}(\xi)}_{\alpha(x, \xi) \in L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)} f(x) \mathrm{d} x . \\
& \hookrightarrow T_{W} \text { is Hilbert-Schmidt }
\end{aligned}
$$

Reminder The Fourier transform of compactly supported functions are entire functions

$$
\hookrightarrow \quad T_{W} \text { is injective }
$$

Properties of T_{W}

Thus, $T_{W}^{\star} T_{W}$ is compact, injective, Hermitian, positive.

Properties of T_{W}

Thus, $T_{W}^{\star} T_{W}$ is compact, injective, Hermitian, positive.
$\hookrightarrow \quad T_{W}^{-1}: \operatorname{ran} T_{W} \rightarrow L^{2}(V)$ is unbounded

Properties of T_{W}

Thus, $T_{W}^{\star} T_{W}$ is compact, injective, Hermitian, positive.
$\hookrightarrow \quad T_{W}^{-1}: \operatorname{ran} T_{W} \rightarrow L^{2}(V)$ is unbounded
$\hookrightarrow \quad \operatorname{ran} T_{W}$ is not closed

Properties of T_{W}

Thus, $T_{W}^{\star} T_{W}$ is compact, injective, Hermitian, positive.
$\hookrightarrow \quad T_{W}^{-1}: \operatorname{ran} T_{W} \rightarrow L^{2}(V)$ is unbounded
$\hookrightarrow \quad \operatorname{ran} T_{W}$ is not closed
$\hookrightarrow \quad T_{W}^{+}$is unbounded and $\mathcal{D}\left(T_{W}^{+}\right) \subsetneq L^{2}(W)$

Properties of T_{W}

Thus, $T_{W}^{\star} T_{W}$ is compact, injective, Hermitian, positive.
$\hookrightarrow \quad T_{W}^{-1}: \operatorname{ran} T_{W} \rightarrow L^{2}(V)$ is unbounded
$\hookrightarrow \quad \operatorname{ran} T_{W}$ is not closed
$\hookrightarrow \quad T_{W}^{+}$is unbounded and $\mathcal{D}\left(T_{W}^{+}\right) \subsetneq L^{2}(W)$

$$
\mathcal{D}\left(T_{W}^{+}\right) \text {is a dense subset of } L^{2}(W)
$$

Properties of T_{W}

Thus, $T_{W}^{\star} T_{W}$ is compact, injective, Hermitian, positive.
$\hookrightarrow \quad T_{W}^{-1}: \operatorname{ran} T_{W} \rightarrow L^{2}(V)$ is unbounded
$\hookrightarrow \quad \operatorname{ran} T_{W}$ is not closed
$\hookrightarrow \quad T_{W}^{+}$is unbounded and $\mathcal{D}\left(T_{W}^{+}\right) \subsetneq L^{2}(W)$

$$
\mathcal{D}\left(T_{W}^{+}\right) \text {is a dense subset of } L^{2}(W)
$$

Proposition $\lambda_{1}\left(T_{W}^{\star} T_{W}\right)<1$.

Properties of T_{W}

Thus, $T_{W}^{\star} T_{W}$ is compact, injective, Hermitian, positive.
$\hookrightarrow \quad T_{W}^{-1}: \operatorname{ran} T_{W} \rightarrow L^{2}(V)$ is unbounded
$\hookrightarrow \quad \operatorname{ran} T_{W}$ is not closed
$\hookrightarrow \quad T_{W}^{+}$is unbounded and $\mathcal{D}\left(T_{W}^{+}\right) \subsetneq L^{2}(W)$

$$
\mathcal{D}\left(T_{W}^{+}\right) \text {is a dense subset of } L^{2}(W)
$$

Proposition $\lambda_{1}\left(T_{W}^{\star} T_{W}\right)<1$.

Fourier interpolation

Fourier interpolation

Proposition Assume that $\Omega \subseteq \mathbb{R}^{d}$ is such that Ω^{c} is bounded. Then,
(i) T_{Ω} is bounded and injective;
(ii) $\operatorname{ran} T_{\Omega}$ is closed;
(iii) $T_{\Omega}^{-1}: \operatorname{ran} T_{\Omega} \rightarrow L^{2}(V)$ is bounded.

Fourier interpolation

Proposition Assume that $\Omega \subseteq \mathbb{R}^{d}$ is such that Ω^{c} is bounded. Then,
(i) T_{Ω} is bounded and injective;
(ii) $\operatorname{ran} T_{\Omega}$ is closed;
(iii) $T_{\Omega}^{-1}: \operatorname{ran} T_{\Omega} \rightarrow L^{2}(V)$ is bounded.

Reason
$\square T_{\Omega}^{\star} T_{\Omega}=I-T_{\Omega^{c}}^{\star} T_{\Omega^{c}}$
$\square T_{\Omega}^{\star} T_{\Omega}$ can be diagonalized, with eigenvalues

$$
\mu_{k}:=\lambda_{k}\left(T_{\Omega}^{\star} T_{\Omega}\right)=1-\lambda_{k}\left(T_{\Omega^{c}}^{\star} T_{\Omega^{c}}\right)
$$

Fourier interpolation

Proposition Assume that $\Omega \subseteq \mathbb{R}^{d}$ is such that Ω^{c} is bounded. Then,
(i) T_{Ω} is bounded and injective;
(ii) $\operatorname{ran} T_{\Omega}$ is closed;
(iii) $T_{\Omega}^{-1}: \operatorname{ran} T_{\Omega} \rightarrow L^{2}(V)$ is bounded.

Reason
$\square T_{\Omega}^{\star} T_{\Omega}=I-T_{\Omega^{c}}^{\star} T_{\Omega^{c}}$
$-T_{\Omega}^{\star} T_{\Omega}$ can be diagonalized, with eigenvalues

$$
\mu_{k}:=\lambda_{k}\left(T_{\Omega}^{\star} T_{\Omega}\right)=1-\lambda_{k}\left(T_{\Omega^{c}}^{\star} T_{\Omega^{c}}\right)
$$

0
1

Regularization

Regularization

Minimize $\frac{1}{2}\left\|g-T_{W} f\right\|_{L^{2}(W)}^{2}+\frac{\alpha}{2}\left\|\mathbb{1}_{W_{\beta}} U f\right\|_{L^{2}\left(W_{\beta}\right)}^{2}$

Regularization

Minimize $\frac{1}{2}\left\|g-T_{W} f\right\|_{L^{2}(W)}^{2}+\frac{\alpha}{2}\left\|1_{W_{\beta}} U f\right\|_{L^{2}\left(W_{\beta}\right)}^{2}$
W_{β} : complement of $B_{1 / \beta}$

Regularization

Minimize $\quad \frac{1}{2}\left\|g-T_{W} f\right\|_{L^{2}(W)}^{2}+\frac{\alpha}{2}\left\|\mathbb{1}_{W_{\beta}} U f\right\|_{L^{2}\left(W_{\beta}\right)}^{2}$

$$
W_{\beta} \text { : complement of } B_{1 / \beta}
$$

New object to be reconstructed: $\phi_{\beta} * f_{0}$

Regularization

Minimize $\frac{1}{2}\left\|g-T_{W} f\right\|_{L^{2}(W)}^{2}+\frac{\alpha}{2}\left\|1_{W_{\beta}} U f\right\|_{L^{2}\left(W_{\beta}\right)}^{2}$
W_{β} : complement of $B_{1 / \beta}$
New object to be reconstructed: $\phi_{\beta} * f_{0}$

$$
\phi_{\beta}:=U^{-1} \mathbb{1}_{B_{1 / \beta}}
$$

Apodized version

Apodized version

$\operatorname{Minimize} \frac{1}{2}\left\|\hat{\phi}_{\beta} g-T_{W} f\right\|_{L^{2}(W)}^{2}+\frac{\alpha}{2}\left\|\left(1-\hat{\phi}_{\beta}\right) \hat{f}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}$
s.t. $f \in L^{2}(V)$

Apodized version

$\operatorname{Minimize} \frac{1}{2}\left\|\hat{\phi}_{\beta} g-T_{W} f\right\|_{L^{2}(W)}^{2}+\frac{\alpha}{2}\left\|\left(1-\hat{\phi}_{\beta}\right) \hat{f}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}$
s.t. $f \in L^{2}(V)$

$$
\phi_{\beta}(x)=\frac{1}{\beta^{d}} \phi\left(\frac{x}{\beta}\right)
$$

Apodized version

$\operatorname{Minimize} \frac{1}{2}\left\|\hat{\phi}_{\beta} g-T_{W} f\right\|_{L^{2}(W)}^{2}+\frac{\alpha}{2}\left\|\left(1-\hat{\phi}_{\beta}\right) \hat{f}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}$

$$
\text { s.t. } f \in L^{2}(V)
$$

Regularized data: $T_{W}\left(\phi_{\beta} * f_{0}\right)=\hat{\phi}_{\beta} T_{W} f_{0} \approx \hat{\phi}_{\beta} g$

Apodized version

$\operatorname{Minimize} \frac{1}{2}\left\|\hat{\phi}_{\beta} g-T_{W} f\right\|_{L^{2}(W)}^{2}+\frac{\alpha}{2}\left\|\left(1-\hat{\phi}_{\beta}\right) \hat{f}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}$

$$
\text { s.t. } f \in L^{2}(V)
$$

Regularized data: $T_{W}\left(\phi_{\beta} * f_{0}\right)=\hat{\phi}_{\beta} T_{W} f_{0} \approx \hat{\phi}_{\beta} g$
Remark On denoting $C_{\beta}: f \mapsto \phi_{\beta} * f$ and $\Phi_{\beta}: g \mapsto \hat{\phi}_{\beta} g$, we have the pseudo-commutation:

$$
T_{W} C_{\beta}=\Phi_{\beta} T_{W}
$$

Well-posedness

$\left(\mathcal{P}_{\alpha, \beta}\right)$
Minimize $\frac{1}{2}\left\|\hat{\phi}_{\beta} g-T_{W} f\right\|^{2}+\frac{\alpha}{2}\left\|\left(1-\hat{\phi}_{\beta}\right) \hat{f}\right\|^{2}$
s.t. $\quad f \in L^{2}(V)$

Well-posedness

Definition $\left\langle f_{1}, f_{2}\right\rangle_{\beta}:=\int_{\mathbb{R}^{d}}\left|1-\hat{\phi}_{\beta}\right|^{2} U f_{1} \overline{U f_{2}}$

$$
\begin{array}{l|rl}
\left(\mathcal{P}_{\alpha, \beta}\right) & \text { Minimize } & \frac{1}{2}\left\|\hat{\phi}_{\beta} g-T_{W} f\right\|^{2}+\frac{\alpha}{2}\left\|\left(1-\hat{\phi}_{\beta}\right) \hat{f}\right\|^{2} \\
\text { s.t. } & f \in L^{2}(V)
\end{array}
$$

Well-posedness

Definition $\left\langle f_{1}, f_{2}\right\rangle_{\beta}:=\int_{\mathbb{R}^{d}}\left|1-\hat{\phi}_{\beta}\right|^{2} U f_{1} \overline{U f_{2}}$
Lemma $\langle\cdot, \cdot\rangle_{\beta}$ is an inner product which turns $L^{2}(V)$ into a Hilbert space. The corresponding norm $\|\cdot\|_{\beta}$ is equivalent to $\|\cdot\|_{L^{2}(V)}$.

$$
\left(\mathcal{P}_{\alpha, \beta}\right) \quad \begin{aligned}
\text { Minimize } & \frac{1}{2}\left\|\hat{\phi}_{\beta} g-T_{W} f\right\|^{2}+\frac{\alpha}{2}\left\|\left(1-\hat{\phi}_{\beta}\right) \hat{f}\right\|^{2} \\
\text { s.t. } & f \in L^{2}(V)
\end{aligned}
$$

Well-posedness

Definition $\left\langle f_{1}, f_{2}\right\rangle_{\beta}:=\int_{\mathbb{R}^{d}}\left|1-\hat{\phi}_{\beta}\right|^{2} U f_{1} \overline{U f_{2}}$
Lemma $\langle\cdot, \cdot\rangle_{\beta}$ is an inner product which turns $L^{2}(V)$ into a Hilbert space. The corresponding norm $\|\cdot\|_{\beta}$ is equivalent to $\|\cdot\|_{L^{2}(V)}$.
Proposition Let $\alpha, \beta>0$ be fixed. Then $\left(\mathcal{P}_{\alpha, \beta}\right)$ has a unique solution $f_{\alpha, \beta}$, which depends continuously on $g \in L^{2}(W)$.

$$
\left(\begin{array}{r|rl}
\left(\mathcal{P}_{\alpha, \beta}\right) & \text { Minimize } & \frac{1}{2}\left\|\hat{\phi}_{\beta} g-T_{W} f\right\|^{2}+\frac{\alpha}{2}\left\|\left(1-\hat{\phi}_{\beta}\right) \hat{f}\right\|^{2} \\
\text { s.t. } & f \in L^{2}(V)
\end{array}\right.
$$

Outline

- Introduction
- Approximate inverses
- Fourier synthesis
\square Variational theorems
- Pseudo-commutants

For simplicity of notation: $T=T_{W}$, and $f_{\beta}=f_{\alpha, \beta}$

For simplicity of notation: $T=T_{W}$, and $f_{\beta}=f_{\alpha, \beta}$

Minimize $\frac{1}{2}\left\|\hat{\phi}_{\beta} g-T f\right\|^{2}+\frac{\alpha}{2}\left\|\left(1-\hat{\phi}_{\beta}\right) \hat{f}\right\|^{2}$
s.t. $f \in L^{2}(V)$

For simplicity of notation: $T=T_{W}$, and $f_{\beta}=f_{\alpha, \beta}$

$$
\begin{aligned}
\text { Minimize } & \frac{1}{2}\left\|\hat{\phi}_{\beta} g-T f\right\|^{2}+\frac{\alpha}{2}\left\|\left(1-\hat{\phi}_{\beta}\right) \hat{f}\right\|^{2} \\
\text { s.t. } & f \in L^{2}(V)
\end{aligned}
$$

$$
H^{s}\left(\mathbb{R}^{2}\right):=\left\{\left.f \in L^{2}\left(\mathbb{R}^{2}\right)\left|\int\left(1+\|\xi\|^{2}\right)^{s}\right| \hat{f}(\xi)\right|^{2} \mathrm{~d} \xi<\infty\right\}
$$

Main Result

Main Result

Theorem Assume that

- $\alpha>0$ (fixed)

Main Result

Theorem Assume that

- $\alpha>0$ (fixed)
- $\phi \in L^{1}\left(\mathbb{R}^{d}\right)$ with $\int \phi(x) \mathrm{d} x=1$ (i.e. $\left.\hat{\phi}(0)=1\right)$

Main Result

Theorem Assume that

- $\alpha>0$ (fixed)
- $\phi \in L^{1}\left(\mathbb{R}^{d}\right)$ with $\int \phi(x) \mathrm{d} x=1$ (i.e. $\hat{\phi}(0)=1$)
- $|1-\hat{\phi}(\xi)| \sim_{\xi \rightarrow 0} K\|\xi\|^{s}$ for some $K, s>0$

Main Result

Theorem Assume that

- $\alpha>0$ (fixed)
- $\phi \in L^{1}\left(\mathbb{R}^{d}\right)$ with $\int \phi(x) \mathrm{d} x=1$ (i.e. $\left.\hat{\phi}(0)=1\right)$
$\cdot|1-\hat{\phi}(\xi)| \sim_{\xi \rightarrow 0} K\|\xi\|^{s}$ for some $K, s>0$
$\square \forall \xi \in \mathbb{R}^{d} \backslash\{0\}, \hat{\phi}(\xi) \neq 1$

Main Result

Theorem Assume that

- $\alpha>0$ (fixed)
- $\phi \in L^{1}\left(\mathbb{R}^{d}\right)$ with $\int \phi(x) \mathrm{d} x=1$ (i.e. $\left.\hat{\phi}(0)=1\right)$
- $|1-\hat{\phi}(\xi)| \sim_{\xi \rightarrow 0} K\|\xi\|^{s}$ for some $K, s>0$
- $\forall \xi \in \mathbb{R}^{d} \backslash\{0\}, \hat{\phi}(\xi) \neq 1$

If $g \in T_{W}\left(L^{2}(V) \cap H^{s}\left(\mathbb{R}^{d}\right)\right)$, then $f_{\beta} \rightarrow T_{W}^{+} g$ strongly as $\beta \downarrow 0$.

Overview of the proof

Overview of the proof

Step 1 : $\left(f_{\beta}\right)_{\beta \in(0,1]}$ is bounded

Overview of the proof

Step 1 : $\left(f_{\beta}\right)_{\beta \in(0,1]}$ is bounded
Step 2: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ converges weakly to $T_{W}^{+} g$

Overview of the proof

Step 1: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ is bounded
Step 2: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ converges weakly to $T_{W}^{+} g$

$$
\beta_{n} \downarrow 0, f_{n}:=f_{\beta_{n}}
$$

Overview of the proof

Step 1: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ is bounded
Step 2: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ converges weakly to $T_{W}^{+} g$

$$
\beta_{n} \downarrow 0, f_{n}:=f_{\beta_{n}}
$$

$\square \exists\left(f_{n_{k}}\right) \rightharpoonup T_{W}^{+} g$

Overview of the proof

Step 1: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ is bounded
Step 2: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ converges weakly to $T_{W}^{+} g$

$$
\beta_{n} \downarrow 0, f_{n}:=f_{\beta_{n}}
$$

$\square \exists\left(f_{n_{k}}\right)-T_{W}^{+} g$
Step 3: The convergence is in fact strong

Overview of the proof

Step 1: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ is bounded
Step 2: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ converges weakly to $T_{W}^{+} g$

$$
\beta_{n} \downarrow 0, f_{n}:=f_{\beta_{n}}
$$

$\square \exists\left(f_{n_{k}}\right) \rightharpoonup T_{W}^{+} g$
Step 3: The convergence is in fact strong

$\left(f_{n}\right)$ bounded

$$
\left.\begin{array}{r}
\lim _{R \rightarrow \infty} \sup _{n} \int_{\|x\|>R}\left|f_{n}(x)\right|^{2} \mathrm{~d} x=0 \\
\sup _{n}\left\|\mathcal{T}_{h} f_{n}-f_{n}\right\| \rightarrow 0 \text { as }\|h\| \rightarrow 0
\end{array}\right\} \Rightarrow\left(f_{n}\right) \text { precompact }
$$

Overview of the proof

Step 1: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ is bounded
Step 2: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ converges weakly to $T_{W}^{+} g$

$$
\beta_{n} \downarrow 0, f_{n}:=f_{\beta_{n}}
$$

$\square \exists\left(f_{n_{k}}\right)-T_{W}^{+} g$
Step 3: The convergence is in fact strong
$\square\left(f_{n}\right)$ is bounded (Step 1)

Overview of the proof

Step 1: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ is bounded
Step 2: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ converges weakly to $T_{W}^{+} g$

$$
\beta_{n} \downarrow 0, f_{n}:=f_{\beta_{n}}
$$

$\square \exists\left(f_{n_{k}}\right) \rightharpoonup T_{W}^{+} g$
Step 3: The convergence is in fact strong
$\square\left(f_{n}\right)$ is bounded (Step 1)

- V bounded $\hookrightarrow \lim _{R \rightarrow \infty} \sup _{n} \int_{\|x\|>R}\left|f_{n}(x)\right|^{2} \mathrm{~d} x=0$

Overview of the proof

Step 1: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ is bounded
Step 2: $\left(f_{\beta}\right)_{\beta \in(0,1]}$ converges weakly to $T_{W}^{+} g$

$$
\beta_{n} \downarrow 0, f_{n}:=f_{\beta_{n}}
$$

$\square \exists\left(f_{n_{k}}\right)-T_{W}^{+} g$
Step 3: The convergence is in fact strong
$\square\left(f_{n}\right)$ is bounded (Step 1)

- V bounded $\hookrightarrow \lim _{R \rightarrow \infty} \sup _{n} \int_{\|x\|>R}\left|f_{n}(x)\right|^{2} \mathrm{~d} x=0$
$\square \sup _{n}\left\|\mathcal{T}_{h} f_{n}-f_{n}\right\| \rightarrow 0$ as $\|h\| \rightarrow 0$

Examples: Lévy kernels

Examples: Lévy kernels

$$
|1-\hat{\phi}(\xi)| \sim_{\xi-0}\|\xi\|^{s}
$$

Examples: Lévy kernels

$$
\begin{gathered}
|1-\hat{\phi}(\xi)| \sim_{\xi \rightarrow 0}\|\xi\|^{s} \\
\forall \xi \in \mathbb{R}^{d} \backslash\{0\}, \quad \hat{\phi}(\xi) \neq 1
\end{gathered}
$$

Examples: Lévy kernels

$$
\begin{gathered}
|1-\hat{\phi}(\xi)| \sim_{\xi \rightarrow 0}\|\xi\|^{s} \\
\forall \xi \in \mathbb{R}^{d} \backslash\{0\}, \quad \hat{\phi}(\xi) \neq 1 \\
\hat{\phi}: \xi \mapsto \exp \left(-\|\xi\|^{s}\right), \quad s \in(0,2]
\end{gathered}
$$

Examples: Lévy kernels

$$
\begin{gathered}
|1-\hat{\phi}(\xi)| \sim_{\xi \rightarrow 0}\|\xi\|^{s} \\
\forall \xi \in \mathbb{R}^{d} \backslash\{0\}, \quad \hat{\phi}(\xi) \neq 1 \\
\hat{\phi}: \xi \mapsto \exp \left(-\|\xi\|^{s}\right), \quad s \in(0,2] \\
\phi: x \mapsto U^{-1} \exp \left(-\|\cdot\|^{s}\right)(x)
\end{gathered}
$$

Examples: Lévy kernels

$$
\begin{gathered}
|1-\hat{\phi}(\xi)| \sim_{\xi \rightarrow 0}\|\xi\|^{s} \\
\forall \xi \in \mathbb{R}^{d} \backslash\{0\}, \quad \hat{\phi}(\xi) \neq 1 \\
\hat{\phi}: \xi \mapsto \exp \left(-\|\xi\|^{s}\right), \quad s \in(0,2] \\
\phi: x \mapsto U^{-1} \exp \left(-\|\cdot\|^{s}\right)(x)
\end{gathered}
$$

$\hookrightarrow \quad \phi$ is positive, isotropic, radially decreasing, C^{∞}

Examples: Lévy kernels

Filters

Examples: Lévy kernels

First extensions

$$
R C_{\beta}=\Phi_{\beta} R \quad \text { with } \quad C_{\beta}:=U^{-1} \hat{\phi}_{\beta} U
$$

First extensions

$$
R C_{\beta}=\Phi_{\beta} R \quad \text { with } \quad C_{\beta}:=U^{-1} \hat{\phi}_{\beta} U
$$

$$
R=U^{-1} \hat{k} U \text {, convolution by } k
$$

$$
\hookrightarrow R C_{\beta}=C_{\beta} R
$$

$$
\Phi_{\beta}=C_{\beta}
$$

First extensions

$$
R C_{\beta}=\Phi_{\beta} R \quad \text { with } \quad C_{\beta}:=U^{-1} \hat{\phi}_{\beta} U
$$

R Radon operator

$$
\begin{gathered}
(R f)(\boldsymbol{\theta}, s)=\int f(\mathbf{x}) \delta(s-\langle\boldsymbol{\theta}, \mathbf{x}\rangle) \mathrm{d} \mathbf{x} \\
R\left(f_{1} * f_{2}\right)=R f_{1} \circledast R f_{2} \\
\circledast \text { convolution selon } s
\end{gathered}
$$

$$
\begin{gathered}
\hookrightarrow R C_{\beta} f=R\left(\phi_{\beta} * f\right)=R \phi_{\beta} \circledast T f \\
\Phi_{\beta}=\left(g \mapsto R \phi_{\beta} \circledast g\right)
\end{gathered}
$$

Further extension

Ill-posed equation : $R f=g$ avec : $R: F \rightarrow G$

Further extension

Ill-posed equation : $R f=g$ avec : $R: F \rightarrow G$

$$
\begin{aligned}
& \qquad f_{0}=C_{e} f_{0}+\left(I-C_{\beta}\right) f_{0} \\
& \text { where } C_{\beta} \text { approaches } I \text { as } \beta \downarrow 0
\end{aligned}
$$

Further extension

Ill-posed equation : $R f=g$ avec : $R: F \rightarrow G$

$$
\begin{aligned}
& \qquad f_{0}=C_{2} f_{0}+\left(I-C_{\beta}\right) f_{0} \\
& \text { where } C_{\beta} \text { approaches } I \text { as } \beta \downarrow 0
\end{aligned}
$$

Assume there is no operator $\Phi_{\beta}: G \rightarrow G$ such that $R C_{\beta}=\Phi_{\beta} R$

Further extension

Ill-posed equation : $R f=g$ avec : $R: F \rightarrow G$

$$
f_{0}=C_{n} f_{0}+\left(I-C_{\beta}\right) f_{0}
$$

where C_{β} approaches I as $\beta \downarrow 0$
Assume there is no operator $\Phi_{\beta}: G \rightarrow G$ such that $R C_{\beta}=\Phi_{\beta} R$

Minimize $\frac{1}{2}\left\|R C_{\beta}-X R\right\|^{2}$
s.t. $\quad X \in L(G), \quad X=0$ on $(\operatorname{ran} R)^{\perp}$

Further extension

$R: L^{2}(V) \rightarrow G, \quad G$ Hilbert space C_{β} convolution by ϕ_{β}

Assume R is still defined on $\operatorname{ran} C_{\beta}$

Further extension

$R: L^{2}(V) \rightarrow G, \quad G$ Hilbert space C_{β} convolution by ϕ_{β}

Assume R is still defined on $\operatorname{ran} C_{\beta}$
$\left(\mathcal{P}_{\beta}\right) \quad$ Minimize $\frac{1}{2}\left\|\Phi_{\beta} g-R f\right\|_{G}^{2}+\frac{\alpha}{2}\left\|\left(I-C_{\beta}\right) f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}$

Further extension

$R: L^{2}(V) \rightarrow G, \quad G$ Hilbert space
C_{β} convolution by ϕ_{β}
Assume R is still defined on $\operatorname{ran} C_{\beta}$
$\left(\mathcal{P}_{\beta}\right) \quad$ Minimize $\frac{1}{2}\left\|\Phi_{\beta} g-R f\right\|_{G}^{2}+\frac{\alpha}{2}\left\|\left(I-C_{\beta}\right) f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}$
$\left(\mathcal{Q}_{\beta}\right)$
Minimize $\quad X \mapsto\left\|R C_{\beta}-X R\right\|$

$$
\text { s.c. } X \in L(G), X=0 \text { on }(\operatorname{ran} R)^{\perp}
$$

Proposition If $R C_{\beta} R^{+}$is bounded, then $R C_{\beta} R^{+}$has a continuous extension on G which is solution of $\left(\mathcal{Q}_{\beta}\right)$.

Proposition If $R C_{\beta} R^{+}$is bounded, then $R C_{\beta} R^{+}$has a continuous extension on G which is solution of $\left(\mathcal{Q}_{\beta}\right)$.

Remark The operator $R C R^{+}$is bounded if and only if there exists a positive constant K telle que

$$
\forall f \in(\operatorname{ker} R)^{\perp}, \quad\|R C f\|_{F} \leq K\|R f\|_{G}
$$

Proposition If $R C_{\beta} R^{+}$is bounded, then $R C_{\beta} R^{+}$has a continuous extension on G which is solution of $\left(\mathcal{Q}_{\beta}\right)$.

Remark The operator $R C R^{+}$is bounded if and only if there exists a positive constant K telle que

$$
\forall f \in(\operatorname{ker} R)^{\perp}, \quad\|R C f\|_{F} \leq K\|R f\|_{G}
$$

Theorem With the same assumptions on ϕ as before, assume that $g \in R\left(L^{2}(V) \cap H^{s}\left(\mathbb{R}^{d}\right)\right)$. Then $f_{\beta} \rightarrow R^{+} g$ strongly as $\beta \downarrow 0$.

Outline

- Introduction
- Approximate inverses
- Fourier synthesis
- Variational theorems
- Pseudo-commutants

Matrix formulation

Matrix formulation

Definition We call pseudo-commutant of a matrix $C \in \mathbb{R}^{n \times n}$ w.r.t. a matrix $R \in \mathbb{R}^{m \times n}$ the unique solution $\Phi \in \mathbb{R}^{m \times m}$ of
(Q)

Minimize $\|X R-R C\|_{F}$
s.t. $X \in \mathbb{R}^{m \times m}, X\left(\operatorname{ker} R^{\top}\right)=\{0\}$.

Matrix formulation

Definition We call pseudo-commutant of a matrix
$C \in \mathbb{R}^{n \times n}$ w.r.t. a matrix $R \in \mathbb{R}^{m \times n}$ the unique solution $\Phi \in \mathbb{R}^{m \times m}$ of
(Q) \quad Minimize $\|X R-R C\|_{F}$

$$
\text { s.t. } X \in \mathbb{R}^{m \times m}, X\left(\operatorname{ker} R^{\top}\right)=\{0\} \text {. }
$$

Proposition The matrix $\Phi=R C R^{+}$is the unique solution to (\mathcal{Q}), and in the case where R is injective, then $R^{+} R$ is the identity, so that Φ actually satisfies $\Phi R=R C$.

Spectral functions

Spectral functions

Remark The Frobenius norm satisfies

$$
\|M\|_{F}^{2}=\operatorname{tr}\left(M^{\top} M\right)=\sum_{j=1}^{m} \sigma_{j}^{2}(M),
$$

where $\sigma_{1}(M) \geq \cdots \geq \sigma_{m}(M)$ are the singular values of M.

Spectral functions

Remark The Frobenius norm satisfies

$$
\|M\|_{F}^{2}=\operatorname{tr}\left(M^{\top} M\right)=\sum_{j=1}^{m} \sigma_{j}^{2}(M),
$$

where $\sigma_{1}(M) \geq \cdots \geq \sigma_{m}(M)$ are the singular values of M.

We shall see that the solution $R C R^{+}$remains unchanged if we replace $\|\cdot\|_{F}$ in Problem (Q) by any convex spectral function.

Group invariance

Group invariance

Definition A function $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is said to be orthogonally invariant if $F(U M V)=F(M)$ for all $M \in \mathbb{R}^{m \times n}$ and all $(U, V) \in \mathrm{O}(m) \times \mathrm{O}(n)$.

Group invariance

Definition A function $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is said to be orthogonally invariant if $F(U M V)=F(M)$ for all $M \in \mathbb{R}^{m \times n}$ and all $(U, V) \in \mathrm{O}(m) \times \mathrm{O}(n)$.

Definition A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is said to be $\Pi(m)$-invariant or absolutely symmetric if $f(Q \mathbf{x})=f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{m}$ and all $Q \in \Pi(m)$.

Group invariance

Definition A function $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is said to be orthogonally invariant if $F(U M V)=F(M)$ for all $M \in \mathbb{R}^{m \times n}$ and all $(U, V) \in \mathrm{O}(m) \times \mathrm{O}(n)$.

Definition A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is said to be $\Pi(m)$-invariant or absolutely symmetric if $f(Q \mathbf{x})=f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{m}$ and all $Q \in \Pi(m)$.

Here, $\Pi(m)$ is the group of signed permutation matrices of size $m \times m$.

Back to spectral functions

Back to spectral functions

$\boldsymbol{\sigma}: \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{m}$
$M \longmapsto \boldsymbol{\sigma}(M):=\left(\sigma_{1}(M), \ldots, \sigma_{m}(M)\right)$

Back to spectral functions

$\sigma: \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{m}$

$$
M \longmapsto \boldsymbol{\sigma}(M):=\left(\sigma_{1}(M), \ldots, \sigma_{m}(M)\right)
$$

Proposition A function $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is orthogonally invariant if and only if it satisfies

$$
F=F \circ \operatorname{diag}_{m \times n} \circ \sigma .
$$

In such a case, $f:=F \circ \operatorname{diag}_{m \times n}$ is the unique absolutely symmetric function such that $F=f \circ \sigma$.

Remarkable facts

Remarkable facts

Theorem Let F be orthogonally invariant, and let $f:=F \circ \operatorname{diag}_{m \times n}$. Then F is convex if and only if f is convex.

Remarkable facts

Theorem Let F be orthogonally invariant, and let $f:=F \circ \operatorname{diag}_{m \times n}$. Then F is convex if and only if f is convex.

Theorem [A. S. Lewis] Let F be orthogonally invariant, and let $f:=F \circ \operatorname{diag}_{m \times n}$. Then, for all $M \in \mathbb{R}^{m \times n}$, the subdifferential of F at M is given by
$\left\{U \operatorname{diag}_{m \times n}(\boldsymbol{\xi}) V \mid \boldsymbol{\xi} \in \partial f(\boldsymbol{\sigma}(M)), U \in \mathrm{O}(m), V \in \mathrm{O}(n)\right\}$.

Theorem [X Bonnefond and PM]

Theorem [X Bonnefond and PM]

Let $R \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{n \times n}$.

Theorem [X Bonnefond and PM]

Let $R \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{n \times n}$.
Let $\mathcal{F}(X)=F(X R-R C)$, in which F is any convex orthogonaly invariant function.

Theorem [X Bonnefond and PM]

Let $R \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{n \times n}$.
Let $\mathcal{F}(X)=F(X R-R C)$, in which F is any convex orthogonaly invariant function.

Then $R C R^{+}$is a solution to

(Q)	Minimize	$\mathcal{F}(X)$
	s.t. $\quad X\left(\operatorname{ker} R^{\top}\right)=\{0\}$.	

Thank you for your attention !

